Spinal cord injury (SCI) is a devastating condition characterized by loss of function, secondary to damaged spinal neurons, disrupted axonal connections, and myelin loss. Spontaneous recovery is limited, and there are no approved pharmaceutical treatments to reduce ongoing damage or promote repair. Repulsive guidance molecule A (RGMa) is upregulated following injury to the central nervous system (CNS), where it is believed to induce neuronal apoptosis and inhibit axonal growth and remyelination.
View Article and Find Full Text PDFTraumatic spinal cord injury (SCI) causes a cascade of degenerative events including cell death, axonal damage, and the upregulation of inhibitory molecules which prevent regeneration and limit recovery. Repulsive guidance molecule A (RGMa) is a potent neurite growth inhibitor in the central nervous system, exerting its repulsive activity by binding the Neogenin receptor. Here, we show for the first time that inhibitory RGMa is markedly upregulated in multiple cell types after clinically relevant impact-compression SCI in rats, and importantly, also in the injured human spinal cord.
View Article and Find Full Text PDFTargeted delivery of a therapeutic agent to a site of pathology to ameliorate disease while limiting exposure at undesired tissues is an aspirational treatment scenario. Targeting diseased kidneys for pharmacologic treatment has had limited success. We designed an approach to target an extracellular matrix protein, the fibronectin extra domain A isoform (FnEDA), which is relatively restricted in distribution to sites of tissue injury.
View Article and Find Full Text PDFABT-700 is a therapeutic antibody against the hepatocyte growth factor receptor (MET). At doses or regimens that lead to exposures exceeding optimum in vivo, the efficacy of ABT-700 is unexpectedly reduced. We hypothesized that this reduction in efficacy was due to a "prozone-like" effect in vivo.
View Article and Find Full Text PDFNovel biologics that redirect cytotoxic T lymphocytes (CTLs) to kill tumor cells bearing a tumor associated antigen hold great promise in the clinic. However, the ability to safely and potently target CD3 on CTL toward tumor associated antigens (TAA) expressed on tumor cells remains a challenge of both technology and biology. Herein we describe the use of a Half DVD-Ig format that can redirect CTL to kill tumor cells.
View Article and Find Full Text PDFProtein glycosylation is arguably the paramount post-translational modification on recombinant glycoproteins, and highly cited in the literature for affecting the physiochemical properties and the efficacy of recombinant glycoprotein therapeutics. Glycosylation of human immunoglobulins follows a reasonably well-understood metabolic pathway, which gives rise to a diverse range of asparagine-linked (N-linked), or serine/threonine-linked (O-linked) glycans. In N-linked glycans, fucose levels have been shown to have an inverse relationship with the degree of antibody-dependent cell-mediated cytotoxicity, and high mannose levels have been implicated in potentially increasing immunogenicity and contributing to less favorable pharmacokinetic profiles.
View Article and Find Full Text PDFExudative age-related macular degeneration (AMD) is the most common cause of moderate and severe vision loss in developed countries. Intraocular injections of vascular endothelial growth factor (VEGF or VEGF-A)-neutralizing proteins provide substantial benefit, but frequent, long-term injections are needed. In addition, many patients experience initial visual gains that are ultimately lost due to subretinal fibrosis.
View Article and Find Full Text PDFTherapeutic proteins circulating in blood are in a highly crowded, redox environment at high temperatures of ~37°C. These molecules circulate in the presence of enzymes and other serum proteins making it difficult to predict from in vitro studies the stability, aggregation or pharmacokinetics of a therapeutic protein in vivo. Here, we describe use of a high throughput capillary electrophoresis based microfluidic device (LabChip GXII) to obtain pharmacokinetics (PK) of a fluorescently labeled human mAb directly from serum.
View Article and Find Full Text PDFFor complex diseases in which multiple mediators contribute to overall disease pathogenesis by distinct or redundant mechanisms, simultaneous blockade of multiple targets may yield better therapeutic efficacy than inhibition of a single target. However, developing two separate monoclonal antibodies for clinical use as combination therapy is impractical, owing to regulatory hurdles and cost. Multi-specific, antibody-based molecules have been investigated; however, their therapeutic use has been hampered by poor pharmacokinetics, stability and manufacturing feasibility.
View Article and Find Full Text PDFCompounds that contain an alpha,beta-unsaturated carbonyl moiety are often flagged as potential Michael acceptors. All alpha,beta-unsaturated carbonyl moieties are not equivalent, however, and we sought to better understand this system and its potential implications in drug-like molecules. Measurement of the (13)C NMR shift of the beta-carbon and correlation to in vitro results allowed compounds in our collection to be categorized as potential Michael acceptors, potential substrates for NADPH, or as photoisomerizable.
View Article and Find Full Text PDF