Background: The rapid development of omics acquisition techniques has induced the production of a large volume of heterogeneous and multi-level omics datasets, which require specific and sometimes complex analyses to obtain relevant biological information. Here, we present ASTERICS (version 2.5), a publicly available web interface for the analyses of omics datasets.
View Article and Find Full Text PDFInspired by the production of reference data sets in the Genome in a Bottle project, we sequenced one Charolais heifer with different technologies: Illumina paired-end, Oxford Nanopore, Pacific Biosciences (HiFi and CLR), 10X Genomics linked-reads, and Hi-C. In order to generate haplotypic assemblies, we also sequenced both parents with short reads. From these data, we built two haplotyped trio high quality reference genomes and a consensus assembly, using up-to-date software packages.
View Article and Find Full Text PDFBy pairing to messenger RNAs (mRNAs for short), microRNAs (miRNAs) regulate gene expression in animals and plants. Accurately identifying which mRNAs interact with a given miRNA and the precise location of the interaction sites is crucial to reaching a more complete view of the regulatory network of an organism. Only a few experimental approaches, however, allow the identification of both within a single experiment.
View Article and Find Full Text PDFBackground: Sequencing is the key method to study the impact of short RNAs, which include micro RNAs, tRNA-derived RNAs, and piwi-interacting RNA, among others. The first step to make use of these reads is to map them to a genome. Existing mapping tools have been developed for long RNAs in mind, and, so far, no tool has been conceived for short RNAs.
View Article and Find Full Text PDFCircular RNA (circRNA) is a noncoding RNA class with important implications for gene expression regulation, mostly by interaction with other RNA species or RNA-binding proteins. While the commonly applied short-read Illumina RNA-sequencing techniques can be used to detect circRNAs, their full sequence is not revealed. However, the complete sequence information is needed to analyze potential interactions and thus the mechanism of action of circRNAs.
View Article and Find Full Text PDFHighly pathogenic avian influenza viruses (HPAIVs) evolve from low pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes. This evolution is characterized by the acquisition of a multi-basic cleavage site (MBCS) motif in the hemagglutinin (HA) that leads to an extended viral tropism and severe disease in poultry. One key unanswered question is whether the risk of transition to HPAIVs is similar for all LPAIVs H5 or H7 strains, or whether specific determinants in the HA sequence of some H5 or H7 LPAIV strains correlate with a higher risk of transition to HPAIVs.
View Article and Find Full Text PDFHigh-throughput sequencing makes it possible to provide the genome-wide distribution of small non coding RNAs in a single experiment, and contributed greatly to the identification and understanding of these RNAs in the last decade. Small non coding RNAs gather a wide collection of classes, such as microRNAs, tRNA-derived fragments, small nucleolar RNAs and small nuclear RNAs, to name a few. As usual in RNA-seq studies, the sequencing step is followed by a feature quantification step: when a genome is available, the reads are aligned to the genome, their genomic positions are compared to the already available annotations, and the corresponding features are quantified.
View Article and Find Full Text PDFCRISPR/Cas systems provide adaptive defense mechanisms against invading nucleic acids in prokaryotes. Because of its interest as a genetic tool, the Type II CRISPR/Cas9 system from has been extensively studied. It includes the Cas9 endonuclease that is dependent on a dual-guide RNA made of a tracrRNA and a crRNA.
View Article and Find Full Text PDFWe present the draft genome sequence of , a microsporidium species infecting A total of 3,013 protein-encoding genes and an array of transposable elements were identified. This work represents a necessary step to develop a novel model of host-parasite relationships using the highly tractable genetic model .
View Article and Find Full Text PDFIn this study, we compared different computational methods used for genome-wide determination of mRNA half-lives in Escherichia coli with a special focus on the impact on considering a delay before the onset of mRNA decay after transcription arrest. A wide variety of datasets were analyzed coming from different technical methods for mRNA quantification (microarrays, RNA-seq, and RT-qPCR) and different bacterial growth conditions. The exponential decay of mRNA levels was fitted using both linear and exponential models and with or without a delay.
View Article and Find Full Text PDFBackground: Small regulatory RNAs (sRNAs) are widely found in bacteria and play key roles in many important physiological and adaptation processes. Studying their evolution and screening for events of coevolution with other genomic features is a powerful way to better understand their origin and assess a common functional or adaptive relationship between them. However, evolution and coevolution of sRNAs with coding genes have been sparsely investigated in bacterial pathogens.
View Article and Find Full Text PDFis an opportunistic Gram-positive pathogen responsible for a wide range of infections from minor skin abscesses to life-threatening diseases. Here, we report the draft genome assembly and current annotation of the HG001 strain, a derivative of the RN1 (NCT8325) strain with restored (a positive activator of SigB).
View Article and Find Full Text PDFMicrosporidia are ubiquitous intracellular pathogens whose opportunistic nature led to their increased recognition with the rise of the AIDS pandemic. As the RNA world was largely unexplored in this parasitic lineage, we developed a dedicated in silico methodology to carry out exhaustive identification of ncRNAs across the Encephalitozoon and Nosema genera. Thus, the previously missing U1 small nuclear RNA (snRNA) and small nucleolar RNAs (snoRNAs) targeting only the LSU rRNA were highlighted and were further validated using 5' and 3'RACE-PCR experiments.
View Article and Find Full Text PDFAs for many model organisms, the amount of omics data produced has recently increased exponentially. There are now >80 published complete genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets through a systems biology approach and the generation of tools for biologists to browse these various data are a challenge for bioinformaticians.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression in a wide variety of physiological processes. They can control both temporal and spatial gene expression and are believed to regulate 30 to 70% of the genes. Data are however limited for fish species, with only 9 out of the 30,000 fish species present in miRBase.
View Article and Find Full Text PDFSummary: Biologists produce large data sets and are in demand of rich and simple web portals in which they can upload and analyze their files. Providing such tools requires to mask the complexity induced by the needed High Performance Computing (HPC) environment. The connection between interface and computing infrastructure is usually specific to each portal.
View Article and Find Full Text PDFThe proper prediction of the gene catalogue of an organism is essential to obtain a representative snapshot of its overall lifestyle, especially when it is not amenable to culturing. Microsporidia are obligate intracellular, sometimes hard to culture, eukaryotic parasites known to infect members of every animal phylum. To date, sequencing and annotation of microsporidian genomes have revealed a poor gene complement with highly reduced gene sizes.
View Article and Find Full Text PDFBackground: Several methods exist for the prediction of precursor miRNAs (pre-miRNAs) in genomic or sRNA-seq (small RNA sequences) data produced by NGS (Next Generation Sequencing). One key information used for this task is the characteristic hairpin structure adopted by pre-miRNAs, that in general are identified using RNA folders whose complexity is cubic in the size of the input. The vast majority of pre-miRNA predictors then rely on further information learned from previously validated miRNAs from the same or a closely related genome for the final prediction of new miRNAs.
View Article and Find Full Text PDFThe 1.5 Gbp/2C genome of pedunculate oak (Quercus robur) has been sequenced. A strategy was established for dealing with the challenges imposed by the sequencing of such a large, complex and highly heterozygous genome by a whole-genome shotgun (WGS) approach, without the use of costly and time-consuming methods, such as fosmid or BAC clone-based hierarchical sequencing methods.
View Article and Find Full Text PDFBackground: Changes to mRNA lifetime adjust mRNA concentration, facilitating the adaptation of growth rate to changes in growth conditions. However, the mechanisms regulating mRNA lifetime are poorly understood at the genome-wide scale and have not been investigated in bacteria growing at different rates.
Results: We used linear covariance models and the best model selected according to the Akaike information criterion to identify and rank intrinsic and extrinsic general transcript parameters correlated with mRNA lifetime, using mRNA half-life datasets for E.
The revolution in high-throughput sequencing technologies has enabled the acquisition of gigabytes of RNA sequences in many different conditions and has highlighted an unexpected number of small RNAs (sRNAs) in bacteria. Ongoing exploitation of these data enables numerous applications for investigating bacterial transacting sRNA-mediated regulation networks. Focusing on sRNAs that regulate mRNA translation in trans, recent works have noted several sRNA-based regulatory pathways that are essential for key cellular processes.
View Article and Find Full Text PDFWe produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination.
View Article and Find Full Text PDF