Publications by authors named "Christine Galez"

The exact molecular reaction pathway and crystallization mechanisms of LiNbO nanoparticles under solvothermal conditions are derived through extensive time- and temperature-resolved experiments allowing to track all the transient molecular and solid species. Starting with a simple mixing of Li/Nb ethoxides, water addition is used to promote condensation after ligand exchange with different co-solvents including alcohols and glycols of variable carbon-chain length. A nonclassical nucleation scheme is first demonstrated after the identification of new octanuclear complexes with a {LiNbO} core whose solvophobic interactions mediate their aggregation, thus, resulting in a colloidal gel at room-temperature.

View Article and Find Full Text PDF

With the miniaturization of electronic-based devices, the foreseen potential of new optical nanoprobes and the assessment of eventual size and shape effects, elaboration of multifunctional noncentrosymmetric nanocrystals with ferroelectric, pyroelectric, piezoelectric, and nonlinear optical properties are the subject of an increasing research interest. Here, the recent achievements from the solution-based methods (coprecipitation in homogeneous and nanostructured media, sol-gel processes including various chemistries and hydro/solvothermal techniques) to prepare 0-D perovskite and nonperovskite oxides in the 5-500 nm size range are critically reviewed. To cover a representative list of covalent- and ionic-type materials, BaTiO and its derivatives, niobate compounds (i.

View Article and Find Full Text PDF

Phase-pure, highly crystalline sub-50 nm LiNbO nanocrystals were prepared from a non-aqueous solvothermal process for 72 h at 230 °C and a commercial precursor solution of mixed lithium niobium ethoxide in its parent alcohol. A systematic variation of the reaction medium composition with the addition of different amounts of co-solvent including butanol, 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol resulted in the formation of nanocrystals of adjustable mean size and shape anisotropy, as demonstrated from XRD measurements and TEM imaging. Colloidal stability of ethanol- and water-based suspensions was evaluated from dynamic light scattering (DLS)/zeta potential studies and correlated with FTIR data.

View Article and Find Full Text PDF

We present two new synthetic routes for bismuth ferrite harmonic nanoparticles (BiFeO HNPs). Both phase-pure and mixed phase BiFeO materials were produced after improvement of the solvent evaporation and sol-gel combustion routes. Metal nitrates with a series of dicarboxylic acids (tartronic, tartaric and mucic) were used to promote crystallization.

View Article and Find Full Text PDF

Background: Harmonic Nanoparticles are a new family of exogenous markers for multiphoton imaging exerting optical contrast by second harmonic (SH) generation. In this tutorial, we present the application of Hyper-Rayleigh Scattering (HRS) for a quantitative assessment of the nonlinear optical properties of these particles and discuss the underlying theory and some crucial experimental aspects.

Methods: The second harmonic properties of BaTiO3, KNbO3, KiTiOPO4 (KTP), LiNbO3 and ZnO nanocrystals (NCs) are investigated by HRS measurements after careful preparation and characterization of colloidal suspensions.

View Article and Find Full Text PDF

Nonlinear optical nanocrystals have been recently introduced as a promising alternative to fluorescent probes for multiphoton microscopy. We present for the first time a complete survey of the properties of five nanomaterials (KNbO(3), LiNbO(3), BaTiO(3), KTP, and ZnO), describing their preparation and stabilization and providing quantitative estimations of their nonlinear optical response. In the light of their prospective use as biological and clinical markers, we assess their biocompatibility on human healthy and cancerous cell lines.

View Article and Find Full Text PDF

We present a technique to characterize ultrashort pulses at the focal plane of a high numerical aperture objective with unprecedented spatial resolution, by performing a FROG measurement with a single nanocrystal as nonlinear medium. This approach can be extended to develop novel phase-sensitive techniques in laser scanning microscopy, probing the microscopic environment by monitoring phase and amplitude distortions of femtosecond laser pulses.

View Article and Find Full Text PDF