The Warthin tumor represents the second most frequent benign tumor of the parotid gland and is characterized by the presence of oncocytes rich in structurally and functionally altered mitochondria. Next to its role in metabolism, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is also implicated in cellular mitophagy. Immunohistochemistry was carried out on Warthin tumor and normal control (parotid gland with striated ducts) tissues, using anti-GAPDH specific antibodies followed by digital image analysis.
View Article and Find Full Text PDFObjective: The transcription factor MITF (microphthalmia-associated transcription factor) is known to induce expression of hypoxia-inducible factor (HIF1-α), which is involved in renal carcinogenesis. The MITF p.E318K mutation leads to deficient SUMOylation of MITF, resulting in enhanced activation of its target genes.
View Article and Find Full Text PDFObjective: Human mouse double minute 2 (Mdm2) is essential in degrading p53 by acting as an ubiquitin ligase and therefore plays a vital role in cell cycle and survival. The G-variant of the Mdm2 SNP309, which is located within the promoter of the Mdm2 gene, increases expression of Mdm2 and thereby inhibits the p53 pathway. Several studies have investigated the influence of this SNP on disease risk and onset of various malignancies.
View Article and Find Full Text PDFAltered expression of the ER-resident aminopeptidases ERAP1 and ERAP2 might play an important role in shaping the MHC class I-presented peptide repertoire, but their function in tumors has not been determined in detail. Thus, the expression of ERAP1, ERAP2 and HLA class I heavy chain (HC) was analysed in various renal tumor types and corresponding kidney parenchyma by immunohistochemistry. Additionally, comparative expression profilings of untreated versus interferon (IFN)-γ-treated RCC cell lines were performed applying qRT-PCR, Western blot and/or flow cytometry.
View Article and Find Full Text PDFNAD(P)H:quinone oxidoreductase 1 (NQO1) catalyses the reduction of quinoid compounds to hydroquinones, preventing the generation of free radicals and reactive oxygen. A "C" to "T" transversion at position 609 of NQO1, leading to a nonsynonymous amino acid change (Pro187Ser, P187S), results in an altered enzyme activity. No NQO1 protein activity was detected in NQO1(609)TT genotype, and low to intermediate activity was detected in NQO1(609)CT genotype compared with (609)CC genotype.
View Article and Find Full Text PDF