Extracting─from the vast space of organic compounds─the best electrode candidates for achieving energy material breakthrough requires the identification of the microscopic causes and origins of various macroscopic features, including notably electrochemical and conduction properties. As a first guess of their capabilities, molecular DFT calculations and quantum theory of atoms in molecules (QTAIM)-derived indicators were applied to explore the family of pyrano[3,2-]pyran-2,6-dione (PPD, , A0) compounds, expanded to A0 fused with various kinds of rings (benzene, fluorinated benzene, thiophene, and merged thiophene/benzene). A glimpse of up-to-now elusive key incidences of introducing oxygen in vicinity to the carbonyl redox center within 6MRs─as embedded in the A0 core central unit common to all A-type compounds─has been gained.
View Article and Find Full Text PDFMaterial design enters an era in which control of electrons in atoms, molecules, and materials is an essential property to be predicted and thoroughly understood in view of discovering new compounds with properties optimized toward specific optical/optoelectronic applications. π-electronic delocalization and charge separation/recombination enter notably into the set of features that are highly desirable to tailor. Diverse domains are particularly relying on photoinduced electron-transfer (PET), including fields of paramount importance such as energy production through light-harvesting, efficient chemoreceptive sensors, or organic field-effect transistors.
View Article and Find Full Text PDFJ Phys Chem A
September 2022
A model for decomposing the Le Bahers, Adamo, and Ciofini Charge Transfer (CT) Excitations global indexes ( 2011, 7, 2498-2506) into molecular subdomains contributions is presented and a software, DOCTRINE (atomic group Decomposition Of the Charge TRansfer INdExes) for the implementation of this novel model has been coded. Although our method applies to any fuzzy or to any disjoint exhaustive partitioning of the real space, it is here applied using a definition of chemically relevant molecular subdomains based on the Atoms in Molecules Bader basins. This choice has the relevant advantage of associating or subdomain contributions to rigorously defined quantum objects, yet bearing a clear chemical meaning.
View Article and Find Full Text PDFZnO/MoO powder mixture exhibits a huge photochromic effect in comparison with the corresponding single oxides. The coloring efficiency of such combined material after UV-light irradiation was studied in terms of intensity, kinetics, and ZnO/MoO powder ratio. Additionally, the incidence of the pretreatment step of the ZnO and MoO powders under different atmospheres (air, Ar or Ar/H flow) was analyzed.
View Article and Find Full Text PDFCarbonyl compounds have emerged as promising organic electrodes for sustainable energy storage. Accelerating the process of performant materials discovery relies on the possibility of developing methodologies to enable scanning of various sets of candidates. The genesis of this educated guess strategy must be privileged to reduce the search space of experiments, accelerate this research area and contribute to sustainable effort.
View Article and Find Full Text PDF. Only few cases of robotic latissimus dorsi flap reconstruction (RLDFR) have been reported in indication of reconstruction for breast cancer (BC). We report our experience of combined robotic nipple-sparing mastectomy (R-NSM) and RLDFR, and analyze technique, indications, and reproducibility.
View Article and Find Full Text PDFThis review addresses concepts, approaches, tools, and outcomes of multiscale modeling used to design and optimize the current and next generation rechargeable battery cells. Different kinds of multiscale models are discussed and demystified with a particular emphasis on methodological aspects. The outcome is compared both to results of other modeling strategies as well as to the vast pool of experimental data available.
View Article and Find Full Text PDFNew concepts to design innovating and top-performing redox-active organic molecules based electrodes should push forward and promote an eco-friendly alternative to classical Li-ion batteries. In this promising research area, density functional theory calculations lend support to experiments through the prediction of redox voltage and give promise to rationalize the trends, thus providing a general approach for engineering advanced materials. In this study in which we analysed spin density/net atomic charges distribution along with global energy decomposition thanks to Bader's partitioning of the molecular space, a vision for designing pentalenedione derivatives by fine tuning of the redox potential properties is presented.
View Article and Find Full Text PDFThe stacking parameters, lattice constants, and bond lengths of solvent-free dilithium squarate (Li(2)C(4)O(4)) crystals were investigated using density functional theory with and without dispersion corrections. The shortcoming of the GGA (PBE) calculation with respect to the dispersive forces appears in the form of an overestimation of the unit cell volume up to 5.8%.
View Article and Find Full Text PDFEfficient organic Li-ion batteries require air-stable lithiated organic structures that can reversibly deintercalate Li at sufficiently high potentials. To date, most of the cathode materials reported in the literature are typically synthesized in their fully oxidized form, which restricts the operating potential of such materials and requires use of an anode material in its lithiated state. Reduced forms of quinonic structures could represent examples of lithiated organic-based cathodes that can deintercalate Li(+) at potentials higher than 3 V thanks to substituent effects.
View Article and Find Full Text PDFA theoretical study of the lithium intercalated LiMSO(4)F and deintercalated MSO(4)F systems, where M = Fe, Co and Ni has been performed within the framework of density functional theory. Beyond predictions of structural evolution and average voltages versus a lithium electrode, we have applied partial density of states and Bader's topological analysis of the electron density to the study of lithium deintercalation. Upon lithium extraction, charge rearrangement occurs for nickel between different d-orbitals, but with little net positive charge gain, while cobalt and iron atoms end up with a clear oxidized state.
View Article and Find Full Text PDF