is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline mutations are less aggressive, and these patients have significantly improved survival.
View Article and Find Full Text PDF: Betel nut is used by an estimated 600 million people globally and is the 4th most widely used psychoactive substance in the world. Its use has been shown to cause oral and esophageal cancers. Therefore, cessation programs are needed in which an effective biomarker can be employed.
View Article and Find Full Text PDFBackground And Purpose: Ursodeoxycholic acid (UDCA) is the first-line treatment for primary biliary cholangitis, but its effects on the enterohepatic circulation of bile acid (BA) have been under-investigated. Therefore, we studied the influence of UDCA on BA enterohepatic circulation in vivo and the mechanisms by which UDCA affects the BA kinetics.
Experimental Approach: Mice were treated with UDCA and other BAs to observe changes in BA pool and BA transporters involved in enterohepatic circulation.
Biotin synthase (BS) is a member of the "SAM radical" superfamily of enzymes, which catalyze reactions in which the reversible or irreversible oxidation of various substrates is coupled to the reduction of the S-adenosyl-l-methionine (AdoMet) sulfonium to generate methionine and 5'-deoxyadenosine (dAH). Prior studies have demonstrated that these products are modest inhibitors of BS and other members of this enzyme family. In addition, the in vivo catalytic activity of Escherichia coli BS requires expression of 5'-methylthioadenosine/S-adenosyl-l-homocysteine nucleosidase, which hydrolyzes 5'-methylthioadenosine (MTA), S-adenosyl-l-homocysteine (AdoHcy), and dAH.
View Article and Find Full Text PDFBiotin synthase catalyzes the oxidative addition of a sulfur atom to dethiobiotin (DTB) to generate the biotin thiophane ring. This reaction is initiated by the reductive cleavage of the sulfonium center of S-adenosyl-L-methionine (AdoMet), generating methionine and a transient 5'-deoxyadenosyl radical that functions as an oxidant by abstracting hydrogen atoms from DTB. Biotin synthase contains a highly conserved sequence motif, YNHNLD, in which Asn153 and Asp155 form hydrogen bonds with the ribose hydroxyl groups of AdoMet.
View Article and Find Full Text PDFBiotin synthase (BS) catalyzes the oxidative addition of a sulfur atom to dethiobiotin (DTB) to generate the biotin thiophane ring. This enzyme is an S-adenosylmethionine (AdoMet) radical enzyme that catalyzes the reductive cleavage of AdoMet, generating methionine and a transient 5'-deoxyadenosyl radical. In our working mechanism, the 5'-deoxyadenosyl radical oxidizes DTB by abstracting a hydrogen from C6 or C9, generating a dethiobiotinyl carbon radical that is quenched by a sulfide from a [2Fe-2S] (2+) cluster.
View Article and Find Full Text PDFRecent studies have demonstrated that mice lacking protein L-isoaspartate (D-aspartate) O-methyltransferase (Pcmt1-/- mice) have alterations in the insulin-like growth factor-I (IGF-I) and insulin receptor pathways within the hippocampal formation as well as other brain regions. However, the cellular localization of these changes and whether the alterations might be associated with an increase in cell number within proliferative regions, such as the dentate gyrus, were unknown. In this study, stereological methods were used to demonstrate that these mice have an increased number of granule cells in the granule cell layer and hilus of the dentate gyrus.
View Article and Find Full Text PDFProtein L-isoaspartyl (D-aspartyl) O-methyltransferase (PCMT1) is a protein-repair enzyme, and mice lacking this enzyme accumulate damaged proteins in multiple tissues, die at an early age from progressive epilepsy and have an increased S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy) ratio in brain tissue. It has been proposed that the alteration of AdoMet and AdoHcy levels might contribute to the seizure phenotype, particularly as AdoHcy has anticonvulsant properties. To investigate whether altered AdoMet and AdoHcy levels might contribute to the seizures and thus the survivability of the repair-deficient mice, a folate-deficient amino acid-based diet was administered to the mice in place of a standard chow diet.
View Article and Find Full Text PDFProtein L-isoaspartate (D-aspartate) O-methyltransferase is an enzyme that catalyses the repair of isoaspartyl damage in proteins. Mice lacking this enzyme (Pcmt1-/- mice) have a progressive increase in brain size compared with wild-type mice (Pcmt1+/+ mice), a phenotype that can be associated with alterations in the PI3K/Akt signal transduction pathway. Here we show that components of this pathway, including Akt, GSK3beta and PDK-1, are more highly phosphorylated in the brains of Pcmt1-/- mice, particularly in cells of the hippocampus, in comparison with Pcmt1+/+ mice.
View Article and Find Full Text PDFL-Isoaspartyl (D-aspartyl) O-methyltransferase (PCMT1) is a protein repair enzyme that initiates the conversion of abnormal D-aspartyl and L-isoaspartyl residues to the normal L-aspartyl form. In the course of this reaction, PCMT1 converts the methyl donor S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy). Due to the high level of activity of this enzyme, particularly in the brain, it seemed of interest to investigate whether the lack of PCMT1 activity might alter the concentrations of these small molecules.
View Article and Find Full Text PDF