Background: Glioblastomas stem-like cells (GSCs) by invading the brain parenchyma, remains after resection and radiotherapy and the tumoral microenvironment become stiffer. GSC invasion is reported as stiffness sensitive and associated with altered N-glycosylation pattern. Glycocalyx thickness modulates integrins mechanosensing, but details remain elusive and glycosylation enzymes involved are unknown.
View Article and Find Full Text PDFGlioblastoma Multiforme (GBM) invasiveness renders complete surgical resection impossible and highly invasive Glioblastoma Initiating Cells (GICs) are responsible for tumour recurrence. Their dissemination occurs along pre-existing fibrillary brain structures comprising the aligned myelinated fibres of the corpus callosum (CC) and the laminin (LN)-rich basal lamina of blood vessels. The extracellular matrix (ECM) of these environments regulates GIC migration, but the underlying mechanisms remain largely unknown.
View Article and Find Full Text PDFOxysterols possess anti-proliferative properties that may be used with much effect in the treatment of cancer. We have demonstrated previously that 7 beta-hydroxycholesterol (7b-HC) provokes both metabolic stress, as witnessed by AMPK activation, and changes in lipid raft composition in C6 glioblastoma cells. These observations suggested that glycolysis might have been changed.
View Article and Find Full Text PDFOxysterols have been shown to interfere with proliferation and cause the death of many cancer cell types, such as leukaemia, glioblastoma, colon, breast and prostate cancer cells, while they have little or no effect on senescent cells. The mechanisms by which oxysterols may influence proliferation are manifold: they control the transcription and the turnover of the key enzyme in cholesterol synthesis, 3-hydroxy-3-methylglutaryl CoA reductase, by binding to Insig-1, Insig-2 and liver X receptors. Oxysterols are thought to be generated in proportion to the rate of cholesterol synthesis.
View Article and Find Full Text PDFAs one of the nine hereditary neurodegenerative polyQ disorders, spinal and bulbar muscular atrophy (SBMA) results from a polyQ tract expansion in androgen receptor (AR). Although protein aggregates are the pathological hallmark of many neurodegenerative diseases, their direct role in the neurodegeneration is more and more questioned. To determine the early molecular mechanisms causing motor neuron degeneration in SBMA, we established an in vitro system based on the tetracycline-inducible expression of normal (AR20Q), the mutated, 51 glutamine-extended (AR51Q), or polyQ-deleted (AR0Q) AR in NSC34, a motor neuron-like cell line lacking endogenous AR.
View Article and Find Full Text PDFPrimary cultures of motoneurons represent a good experimental model for studying mechanisms underlying certain spinal cord pathologies, such as amyotrophic lateral sclerosis and spinal bulbar muscular atrophy (Kennedy's disease). However, a major problem with such culture systems is the relatively short cell survival times, which limits the extent of motoneuronal maturation. In spite of supplementing culture media with various growth factors, it remains difficult to maintain motoneurons viable longer than 10 days in vitro.
View Article and Find Full Text PDFThis study aimed to provide detailed data on mitochondrial respiration of normal astrocyte cell lines derived from rat embryonic spinal cord. Astrocytes in early passages (EP), cultured without pyruvate for more than 35 passages, defined here as late passages (LP), undergo spontaneous transformation. To study initial steps in cell transformation, EP data were compared with those of LP cells.
View Article and Find Full Text PDFThe aim of this study was to examine the expression of aromatase and receptors to steroid hormones in cultured motoneurons (MNs). We first developed an original method for obtaining rat MN cultures. Dissociated E15 rat spinal cords were purified using metrizamide and bovine serum albumin density gradients, and cells were then seeded on the culture substratum.
View Article and Find Full Text PDFp120 catenin (p120ctn) is implicated in the regulation of cadherin-mediated adhesion and actin cytoskeleton remodeling. The interaction of cytoplasmic p120ctn with the guanine exchange factor Vav2 is one of the signaling pathways implicated in cytoskeleton dynamics. We show here that p120ctn is regulated during rat brain development and is distributed at the membrane and within the cytoplasm where it associates with N-cadherin and Vav2, respectively.
View Article and Find Full Text PDFThe binding of two antitumour alkaloids, vinorelbine and vinflunine, to the alpha/beta-tubulin dimer has been investigated at equilibrium by nuclear magnetic resonance (NMR) spectroscopy. Tubulin stability and assembly induced by these drugs has been checked under NMR experimental conditions, and tubulin spirals were found in majority. Then, using increasing ligand concentrations, the alkaloids were titrated against tubulin.
View Article and Find Full Text PDF