Working memory (WM) enables the temporary storage of limited information and is a central component of higher order cognitive function. Irrelevant and/or distracting information can have a negative impact on WM processing and suppressing such incoming stimuli is critical to maintaining adequate performance. However, the neural mechanisms and dynamics underlying such distractor inhibition remain poorly understood.
View Article and Find Full Text PDFDespite effective antiretroviral therapy, cognitive impairment remains prevalent among people with HIV (PWH) and decrements in executive function are particularly prominent. One component of executive function is cognitive flexibility, which integrates a variety of executive functions to dynamically adapt one's behavior in response to changing contextual demands. Though substantial work has illuminated HIV-related aberrations in brain function, it remains unclear how the neural oscillatory dynamics serving cognitive flexibility are affected by HIV-related alterations in neural functioning.
View Article and Find Full Text PDFVerbal working memory (vWM) is an essential limited-capacity cognitive system that spans the fronto-parietal network and utilizes the subprocesses of encoding, maintenance, and retrieval. With the recent widespread use of noninvasive brain stimulation techniques, multiple recent studies have examined whether such stimulation may enhance cognitive abilities such as vWM, but the findings to date remain unclear in terms of both behavior and critical brain regions. In the current study, we applied high-definition direct current stimulation to the left and right parietal cortices of 39 healthy adults in three separate sessions (left anodal, right anodal, and sham).
View Article and Find Full Text PDFTestosterone levels sharply rise during the transition from childhood to adolescence and these changes are known to be associated with changes in human brain structure. During this same developmental window, there are also robust changes in the neural oscillatory dynamics serving verbal working memory processing. Surprisingly, whereas many studies have investigated the effects of chronological age on the neural oscillations supporting verbal working memory, none have probed the impact of endogenous testosterone levels during this developmental period.
View Article and Find Full Text PDFFluid intelligence (Gf) involves rational thinking skills and requires the integration of information from different cortical regions to resolve novel complex problems. The effects of non-invasive brain stimulation on Gf have been studied in attempts to improve Gf, but such studies are rare and the few existing have reached conflicting conclusions. The parieto-frontal integration theory of intelligence (P-FIT) postulates that the parietal and frontal lobes play a critical role in Gf.
View Article and Find Full Text PDFPrior research has shown that the sensorimotor cortical oscillations are uncharacteristic in persons with cerebral palsy (CP); however, it is unknown if these altered cortical oscillations have an impact on adaptive sensorimotor control. This investigation evaluated the cortical dynamics when the motor action needs to be changed "on-the-fly". Adults with CP and neurotypical controls completed a sensorimotor task that required either proactive or reactive control while undergoing magnetoencephalography (MEG).
View Article and Find Full Text PDFBackground: Regular cannabis is known to impact higher-order cognitive processes such as attention, but far less is known regarding cognitive flexibility, a component of executive function. Moreover, whether such changes are related to aberrations in the neural oscillatory dynamics serving flexibility remains poorly understood.
Aims: Quantify the neural oscillatory dynamics serving cognitive flexibility by having participants complete a task-switching paradigm during magnetoencephalography (MEG).
Numerous investigations have characterized the oscillatory dynamics serving working memory in adults, but few have probed its relationship with chronological age in developing youth. We recorded magnetoencephalography during a modified Sternberg verbal working memory task in 82 youth participants aged 6-14 years old. Significant oscillatory responses were identified and imaged using a beamforming approach and the resulting whole-brain maps were probed for developmental effects during the encoding and maintenance phases.
View Article and Find Full Text PDFWorking memory (WM) is a foundational cognitive function involving the temporary storage of information. Unfortunately, WM is also one of the most sensitive cognitive functions to the detrimental effects of aging. Expanding the field's understanding of age-related WM changes is critical to advancing the development of strategies to mitigate age-related WM declines.
View Article and Find Full Text PDFIntroduction: People with Alzheimer's disease (AD) experience more rapid declines in their ability to form hippocampal-dependent memories than cognitively normal healthy adults. Degeneration of the whole hippocampal formation has previously been found to covary with declines in learning and memory, but the associations between subfield-specific hippocampal neurodegeneration and cognitive impairments are not well characterized in AD. To improve prognostic procedures, it is critical to establish in which hippocampal subfields atrophy relates to domain-specific cognitive declines among people along the AD spectrum.
View Article and Find Full Text PDFThe neural and cognitive processes underlying the flexible allocation of attention undergo a protracted developmental course with changes occurring throughout adolescence. Despite documented age-related improvements in attentional reorienting throughout childhood and adolescence, the neural correlates underlying such changes in reorienting remain unclear. Herein, we used magnetoencephalography (MEG) to examine neural dynamics during a Posner attention-reorienting task in 80 healthy youth (6-14 years old).
View Article and Find Full Text PDFAssessing brain connectivity during rest has become a widely used approach to identify changes in functional brain organization during development. Generally, previous works have demonstrated that brain activity shifts from more local to more distributed processing from childhood into adolescence. However, the majority of those works have been based on functional magnetic resonance imaging measures, whereas multispectral functional connectivity, as measured using magnetoencephalography (MEG), has been far less characterized.
View Article and Find Full Text PDFRecent investigations have studied the development of motor-related oscillatory responses to delineate maturational changes from childhood to young adulthood. While these studies included youth during the pubertal transition period, none have probed the impact of testosterone levels on motor cortical dynamics and performance. We collected salivary testosterone samples and recorded magnetoencephalography during a complex motor sequencing task in 58 youth aged 9-15 years old.
View Article and Find Full Text PDFSelective attention is an important component of cognitive control and is essential for day-to-day functioning. The Simon task is a common test of visual selective attention that has been widely used to probe response selection, inhibition and cognitive control. However, to date, there is a dearth of literature that has focused on the oscillatory dynamics serving task performance in the selective attention component of this task.
View Article and Find Full Text PDFPoor glycemic control in type 2 diabetes has been associated with accentuated age-related cognitive decline, although the underlying neural mechanisms are not well understood. The current study sought to identify the impact of glycemic control on the neural dynamics serving working memory in adults with type 2 diabetes. Participants (n = 34, ages = 55-73) performed a working memory task while undergoing MEG.
View Article and Find Full Text PDFIn the largest and most expansive lifespan magnetoencephalography (MEG) study to date (n = 434, 6 to 84 y), we provide critical data on the normative trajectory of resting-state spontaneous activity and its temporal dynamics. We perform cutting-edge analyses to examine age and sex effects on whole-brain, spatially-resolved relative and absolute power maps, and find significant age effects in all spectral bands in both types of maps. Specifically, lower frequencies showed a negative correlation with age, while higher frequencies positively correlated with age.
View Article and Find Full Text PDFBackground: Spontaneous beta activity in the primary motor cortices has been shown to increase in amplitude with advancing age, and that such increases are tightly coupled to stronger motor-related beta oscillations during movement planning. However, the relationship between these age-related changes in spontaneous beta in the motor cortices, local cortical thickness, and overall motor function remains unclear.
Methods: We collected resting-state magnetoencephalography (MEG), high-resolution structural MRI, and motor function scores using a neuropsychological battery from 126 healthy adults (56 female; age range = 22-72 years).
The Coronavirus Disease 2019 (COVID-19) pandemic has caused massive disruptions to daily life in the United States, closing schools and businesses and increasing physical and social isolation, leading to deteriorations in mental health and well-being in people of all ages. Many studies have linked chronic stress with long-term changes in cortisol secretion, which has been implicated in many stress-related physical and mental health problems that commonly emerge in adolescence. However, the physiological consequences of the pandemic in youth remain understudied.
View Article and Find Full Text PDFBackground: Trait dissociation has not been examined from a structural human brain mapping perspective in healthy adults or children. Non-pathological dissociation shares some features with daydreaming and mind-wandering, but also involves subtle disruptions in affect and autobiographical memory.
Aims: To identify neurostructural biomarkers of trait dissociation in healthy children.
Adults with HIV frequently develop a form of mild cognitive impairment known as HIV-associated neurocognitive disorder (HAND), but presumably cognitive decline in older persons with HIV could also be attributable to Alzheimer's disease (AD). However, distinguishing these two conditions in individual patients is exceedingly difficult, as the distinct neural and neuropsychological features are poorly understood and most studies to date have only investigated HAND or AD spectrum (ADS) disorders in isolation. The current study examined the neural dynamics underlying visuospatial processing using magnetoencephalography (MEG) in 31 biomarker-confirmed patients on the ADS, 26 older participants who met criteria for HAND, and 31 older cognitively normal controls.
View Article and Find Full Text PDFType 2 diabetes is known to negatively affect higher order cognition and the brain, but the underlying mechanisms are not fully understood. In particular, glycemic control and common comorbidities are both thought to contribute to alterations in cortical neurophysiology in type 2 diabetes, but their specific impact remains unknown. The current study probed the dynamics underlying cognitive control in older participants with type 2 diabetes, with and without additional comorbid conditions (i.
View Article and Find Full Text PDFBackground: Assessing brain activity during rest has become a widely used approach in developmental neuroscience. Extant literature has measured resting brain activity both during eyes-open and eyes-closed conditions, but the difference between these conditions has not yet been well characterized. Studies, limited to fMRI and EEG, have suggested that eyes-open versus -closed conditions may differentially impact neural activity, especially in visual cortices.
View Article and Find Full Text PDFVisual processing is widely understood to be served by a decrease in alpha activity in occipital cortices, largely concurrent with an increase in gamma activity. Although the characteristics of these oscillations are well documented in response to a range of complex visual stimuli, little is known about how these dynamics are impacted by concurrent motor responses, which is problematic as many common visual tasks involve such responses. Thus, in the current study, we used magnetoencephalography (MEG) and modified a well-established visual paradigm to explore the impact of motor responses on visual oscillatory activity.
View Article and Find Full Text PDFSemantic processing is the ability to discern and maintain conceptual relationships among words and objects. While the neural circuits serving semantic representation and controlled retrieval are well established, the neuronal dynamics underlying these processes are poorly understood. Herein, we examined 25 healthy young adults who completed a semantic relation word-matching task during magnetoencephalography (MEG).
View Article and Find Full Text PDFWorking memory, the ability to hold items in memory stores for further manipulation, is a higher order cognitive process that supports many aspects of daily life. Childhood trauma has been associated with altered cognitive development including particular deficits in verbal working memory (VWM), but the neural underpinnings remain poorly understood. Magnetoencephalography (MEG) studies of VWM have reliably shown decreased alpha activity in left-lateralized language regions during encoding, and increased alpha activity in parieto-occipital cortices during the maintenance phase.
View Article and Find Full Text PDF