Publications by authors named "Christine E Prosser"

Article Synopsis
  • * It reveals that the flexibility of IL-17 cytokines influences their receptor binding affinities, indicating that more flexible cytokines tend to bind more strongly to their receptors, challenging previous static structural analyses.
  • * The research suggests that small molecule inhibitors may work by making proteins more rigid, thus lowering receptor affinity, and proposes that targeting allosteric sites that influence protein dynamics could lead to innovative therapeutic strategies.
View Article and Find Full Text PDF

The proinflammatory cytokines IL-17A and IL-17F have been identified as key drivers of a range of human inflammatory diseases, such as psoriasis, which has led to several therapeutic antibodies targeted at IL-17A. The two cytokines have been shown to tightly associate as functional homo and hetero dimers, which induce signalling via the formation of a cell surface signalling complex with a single copy of both IL-17RA and IL-17RC. Striking differences in affinity have been observed for IL-17RA binding to IL-17AA, IL-17AF and IL-17FF, however, the functional significance and molecular basis for this has remained unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Dkk family proteins, specifically Dkk4, play a crucial role in regulating Wnt signaling pathways, which are vital for various biological processes.
  • The study reveals the first atomic-resolution structure of Dkk4's N-terminal cysteine-rich domain (CRD1) and suggests significant evolutionary conservation and structural similarities between CRD1 and the C-terminal domain (CRD2).
  • The findings indicate that Dkk4 consists of two independent domains linked by a flexible region, and that CRD2 binds strongly to LRP6 and Kremen1, while the N-terminal region shows moderate binding to LRP6, highlighting the complex interactions that help to finely regulate Wnt signaling.
View Article and Find Full Text PDF

Specific, high affinity protein-protein interactions lie at the heart of many essential biological processes, including the recognition of an apparently limitless range of foreign proteins by natural antibodies, which has been exploited to develop therapeutic antibodies. To mediate biological processes, high affinity protein complexes need to form on appropriate, relatively rapid timescales, which presents a challenge for the productive engagement of complexes with large and complex contact surfaces (∼600-1800 Å(2)). We have obtained comprehensive backbone NMR assignments for two distinct, high affinity antibody fragments (single chain variable and antigen-binding (Fab) fragments), which recognize the structurally diverse cytokines interleukin-1β (IL-1β, β-sheet) and interleukin-6 (IL-6, α-helical).

View Article and Find Full Text PDF

Heavy chain antibodies differ in structure to conventional antibodies lacking both the light chain and the first heavy chain constant domain (CH1). Characteristics of the antigen-binding variable heavy domain of the heavy chain antibody (VHH) including the smaller size, high solubility and stability make them an attractive alternative to more traditional antibody fragments for detailed NMR-based structural analysis. Here we report essentially complete backbone and side chain (15)N, (13)C and (1)H assignments for a free VHH.

View Article and Find Full Text PDF

Identifying protein-ligand binding interactions is a key step during early-stage drug discovery. Existing screening techniques are often associated with drawbacks such as low throughput, high sample consumption, and dynamic range limitations. The increasing use of fragment-based drug discovery (FBDD) demands that these techniques also detect very weak interactions (mM K(D) values).

View Article and Find Full Text PDF