Disorders of sex development (DSDs) are congenital anomalies that affect sexual differentiation of genitourinary organs and secondary sex characters. A common cause of female genital virilization is congenital adrenal hyperplasia (CAH), in which excess androgen production during development of 46XX females can result in vaginal atresia, masculinization of the urethra, a single urogenital sinus, and clitoral hypertrophy or ambiguous external genitalia. Development of the vagina depends on sexual differentiation of the urogenital sinus ridge, an epithelial thickening that forms where the sex ducts attach to the anterior urethra.
View Article and Find Full Text PDFMalformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models.
View Article and Find Full Text PDFDevelopment of a phallus occurs in almost all amniotes; however, considerable variation in phallus morphology among different amniote lineages has contributed to the debate about their structural homology. Mammals are the only amniotes that form a closed urethral tube within the penis. In contrast, the phallus of reptiles and birds has an open urethral groove, or sulcus spermaticus, that facilitates directional flow of sperm along the penis.
View Article and Find Full Text PDFSpecification of the left-right axis during embryonic development is critical for the morphogenesis of asymmetric organs such as the heart, lungs, and stomach. The first known left-right asymmetry to occur in the mouse embryo is a leftward fluid flow in the node that is created by rotating cilia on the node surface. This flow is followed by asymmetric expression of Nodal and its inhibitor Cerl2 in the node.
View Article and Find Full Text PDFArl13b, a ciliary protein within the ADP-ribosylation factor family and Ras superfamily of GTPases, is required for ciliary structure but has poorly defined ciliary functions. In this paper, we further characterize the role of Arl13b in cilia by examining mutant cilia in vitro and determining the localization and dynamics of Arl13b within the cilium. Previously, we showed that mice lacking Arl13b have abnormal Sonic hedgehog (Shh) signaling; in this study, we show the dynamics of Shh signaling component localization to the cilium are disrupted in the absence of Arl13b.
View Article and Find Full Text PDFMitochondria are dynamic cellular organelles that balance fission and fusion to regulate organelle morphology, distribution, and activity, and Opa1 is one of three GTPases known to regulate mitochondrial fusion. In humans, loss of a single Opa1 allele causes dominant optic atrophy, a degenerative condition that leads to loss of vision. Here we demonstrate that the lilR3 mutant mouse phenotype is due to a point mutation in the Opa1 gene resulting in mislocalized Opa1 protein from the mitochondria to the cytosol.
View Article and Find Full Text PDFSeveral studies have linked cilia and Hedgehog signaling, but the precise roles of ciliary proteins in signal transduction remain enigmatic. Here we describe a mouse mutation, hennin (hnn), that causes coupled defects in cilia structure and Sonic hedgehog (Shh) signaling. The hnn mutant cilia are short with a specific defect in the structure of the ciliary axoneme, and the hnn neural tube shows a Shh-independent expansion of the domain of motor neuron progenitors.
View Article and Find Full Text PDFAlthough many studies have been conducted to identify single nucleotide polymorphisms (SNPs) in humans, few studies have been conducted to identify alternative forms of natural genetic variation, such as insertion and deletion (INDEL) polymorphisms. In this report, we describe an initial map of human INDEL variation that contains 415,436 unique INDEL polymorphisms. These INDELs were identified with a computational approach using DNA re-sequencing traces that originally were generated for SNP discovery projects.
View Article and Find Full Text PDF