Publications by authors named "Christine Doucet"

Many proteins with intrinsically disordered regions undergo liquid-liquid phase separation under specific conditions in vitro and in vivo. These complex biopolymers form a metastable phase with distinct mechanical properties defining the timescale of their biological functions. However, determining these properties is nontrivial, even in vitro, and often requires multiple techniques.

View Article and Find Full Text PDF

Technological breakthroughs in cryo-electron microscopy (cryo-EM) methods open new perspectives for highly detailed structural characterizations of extracellular vesicles (EVs) and synthetic liposome-protein assemblies. Structural characterizations of these vesicles in solution under a nearly native hydrated state are of great importance to decipher cell-to-cell communication and to improve EVs' application as markers in diagnosis and as drug carriers in disease therapy. However, difficulties in preparing holey carbon cryo-EM grids with low vesicle heterogeneities, at low concentration and with kinetic control of the chemical reactions or assembly processes, have limited cryo-EM use in the EV study.

View Article and Find Full Text PDF

Huntington's disease is a neurodegenerative disorder caused by a CAG expansion in the first exon of the HTT gene, resulting in an extended polyglutamine (poly-Q) tract in huntingtin (httex1). The structural changes occurring to the poly-Q when increasing its length remain poorly understood due to its intrinsic flexibility and the strong compositional bias. The systematic application of site-specific isotopic labeling has enabled residue-specific NMR investigations of the poly-Q tract of pathogenic httex1 variants with 46 and 66 consecutive glutamines.

View Article and Find Full Text PDF

Nuclear pore complexes (NPCs) are the only gateways between the nucleus and cytoplasm in eukaryotic cells. They restrict free diffusion to molecules below 5 nm while facilitating the active transport of selected cargoes, sometimes as large as the pore itself. This versatility implies an important pore plasticity.

View Article and Find Full Text PDF

The plasma membrane is a key actor of cell migration. For instance, its tension controls persistent cell migration and cell surface caveolae integrity. Then, caveolae constituents such as caveolin-1 can initiate a mechanotransduction loop that involves actin- and focal adhesion-dependent control of the mechanosensor YAP to finely tune cell migration.

View Article and Find Full Text PDF

STING is essential for control of infections and for tumor immunosurveillance, but it can also drive pathological inflammation. STING resides on the endoplasmic reticulum (ER) and traffics following stimulation to the ERGIC/Golgi, where signaling occurs. Although STING ER exit is the rate-limiting step in STING signaling, the mechanism that drives this process is not understood.

View Article and Find Full Text PDF

Membrane partition and remodeling play a key role in numerous cell mechanisms, especially in viral replication cycles where viruses subvert the plasma membrane to enter and escape from the host cell. Specifically assembly and release of HIV-1 particles require specific cellular components, which are recruited to the egress site by the viral protein Gag. We previously demonstrated that HIV-1 assembly alters both partitioning and dynamics of the tetraspanins CD9 and CD81, which are key players in many infectious processes, forming enriched areas where the virus buds.

View Article and Find Full Text PDF

Adolescence is a transitional period of development characterized by critical changes in physical, neural, cognitive, affective, and social functions. Studies investigating the underlying mechanisms of substance use at levels of self-report, brain response, and behavioral data are generally consistent with suggestions from dual-process model that differential growth rates of frontally mediated control and striato-frontal reward processing are related to a heightened risk of substance use during adolescence. However, social theories highlight the important role of social context and environment in which adolescents grow up and suggest that growing up in an unfavorable environment and in particular exposure to adverse childhood experiences play a huge role in how this vulnerability is translated into actual risk.

View Article and Find Full Text PDF

Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors).

View Article and Find Full Text PDF

Aims: To examine the effectiveness of a personality-targeted intervention program (Adventure trial) delivered by trained teachers to high-risk (HR) high-school students on reducing marijuana use and frequency of use.

Design: A cluster-randomized controlled trial.

Setting: Secondary schools in London, UK.

View Article and Find Full Text PDF

Nuclear pore complexes (NPCs) serve as transport channels across the nuclear membrane, a double lipid bilayer that physically separates the nucleoplasm and cytoplasm of eukaryotic cells. New evidence suggests that the multiprotein nuclear pores also play a role in chromatin organization and gene expression. Given the importance of NPC function, it is not surprising that a growing list of human diseases and developmental defects have been linked to its malfunction.

View Article and Find Full Text PDF

In metazoa, nuclear pore complexes (NPCs) assemble from disassembled precursors into a reforming nuclear envelope (NE) at the end of mitosis and into growing intact NEs during interphase. Here, we show via RNAi-mediated knockdown that ELYS, a nucleoporin critical for the recruitment of the essential Nup107/160 complex to chromatin, is required for NPC assembly at the end of mitosis but not during interphase. Conversely, the transmembrane nucleoporin POM121 is critical for the incorporation of the Nup107/160 complex into new assembly sites specifically during interphase.

View Article and Find Full Text PDF

We present a miniaturized pull-down method for the detection of protein-protein interactions using standard affinity chromatography reagents. Binding events between different proteins, which are color-coded with quantum dots (QDs), are visualized on single affinity chromatography beads by fluorescence microscopy. The use of QDs for single molecule detection allows the simultaneous analysis of multiple protein-protein binding events and reduces the amount of time and material needed to perform a pull-down experiment.

View Article and Find Full Text PDF

In eukaryotic cells, proteasomes play an essential role in intracellular proteolysis and are involved in the control of most biological processes through regulated degradation of key proteins. Analysis of 20S proteasome localization in human cell lines, using ectopic expression of its CFP-tagged alpha7 subunit, revealed the presence in nuclear foci of a specific and proteolytically active complex made by association of the 20S proteasome with its PA28gamma regulator. Identification of these foci as the nuclear speckles (NS), which are dynamic subnuclear structures enriched in splicing factors (including the SR protein family), prompted us to analyze the role(s) of proteasome-PA28gamma complexes in the NS.

View Article and Find Full Text PDF

Muscle wasting, characterized by the loss of protein mass in myofibers, is in most cases largely due to the activation of intracellular protein degradation by the ubiquitin proteasome system (UPS). During the last decade, mechanisms contributing to this activation have been unraveled and key mediators of this process identified. Even though much remains to be understood, the available information already suggests screens for new compounds inhibiting these mechanisms and highlights the potential for pharmaceutical drugs able to treat muscle wasting when it becomes deleterious.

View Article and Find Full Text PDF

Background: The two myogenic regulatory factors Myf5 and MyoD are basic helix-loop-helix muscle transcription factors undergoing differential cell cycle dependent proteolysis in proliferating myoblasts. This regulated degradation results in the striking expression of these two factors at distinct phases of the cell cycle, and suggests that their precise and alternated disappearance is an important feature of myoblasts, maybe connected to the maintenance of the proliferative status and/or commitment to the myogenic lineage of these cells. One way to understand the biological function(s) of the cyclic expression of these proteins is to specifically alter their degradation, and to analyze the effects of their stabilization on cells.

View Article and Find Full Text PDF