The buffering of phosphorus (P) in the landscape delays management outcomes for water quality. If stored in labile form (readily exchangeable and bioavailable), P may readily pollute waters. We studied labile P and its intensity for >600 soils and sediments across seven study locations in the United States.
View Article and Find Full Text PDFScientific knowledge related to quantifying the monetized benefits for landscape-wide water quality improvements does not meet current regulatory and benefit-cost analysis needs in the United States. In this study we addressed this knowledge gap by incorporating the Biological Condition Gradient (BCG) as a water quality metric into a stated preference survey capable of estimating the total economic value (use and nonuse) for aquatic ecosystem improvements. The BCG is grounded in ecological principles and generalizable and transferable across space.
View Article and Find Full Text PDFA prevailing paradigm suggests that species richness increases with area in a decelerating way. This ubiquitous power law scaling, the species-area relationship, has formed the foundation of many conservation strategies. In spatially complex ecosystems, however, the area may not be the sole dimension to scale biodiversity patterns because the scale-invariant complexity of fractal ecosystem structure may drive ecological dynamics in space.
View Article and Find Full Text PDFDespite decades of policy that strives to reduce nutrient and sediment export from agricultural fields, surface water quality in intensively managed agricultural landscapes remains highly degraded. Recent analyses show that current conservation efforts are not sufficient to reverse widespread water degradation in Midwestern agricultural systems. Intensifying row crop agriculture and increasing climate pressure require a more integrated approach to water quality management that addresses diverse sources of nutrients and sediment and off-field mitigation actions.
View Article and Find Full Text PDFNear-channel sediment loading (NCSL) is localized and episodic, making it difficult to accurately quantify its cumulative contribution to watershed sediment loading, let alone predict the effects from changes in river discharge due to climate change or land management practices. We developed a methodological framework, using commonly available stream gaging data, for estimating watershed-scale NCSL, a feature generally absent in most watershed models. The method utilizes a network of paired gages that bracket the incised river corridors of 15 tributaries to the Minnesota River, in which near-channel sources are often the dominant contributors of sediment loading.
View Article and Find Full Text PDFBackground: Skeletal and eye abnormalities in amphibians are not well understood, and they appear to be increasing while global populations decline. Here, we present the first study of amphibian abnormalities in Alaska.
Objective: In this study we investigated the relationship between anthropogenic influences and the probability of skeletal and eye abnormalities in Alaskan wood frogs (Rana sylvatica).