Publications by authors named "Christine Demore"

Objective: Endovascular revascularization of peripheral arterial occlusions has a high technical failure rate of 15-20%, mainly due to difficulties in crossing the occlusion with a guidewire. This study evaluates the use of a Picosecond mid-Infrared Laser (PIRL) to facilitate occlusion crossing.

Methods: Popliteal artery lesion samples were obtained from a donated limb of a patient with critical limb ischemia (CLI).

View Article and Find Full Text PDF

Compact high-frequency arrays are of interest for clinical and preclinical applications in which a small-footprint or endoscopic device is needed to reach the target anatomy. However, the fabrication of compact arrays entails the connection of several dozens of small elements to the imaging system through a combination of flexible printed circuit boards at the array end and micro-coaxial cabling to the imaging system. The methods currently used, such as wire bonding, conductive adhesives, or a dry connection to a flexible circuit, considerably increase the array footprint.

View Article and Find Full Text PDF

Objective: High-frequency, high-resolution transrectal micro-ultrasound (micro-US: ≥15 MHz) imaging of the prostate is emerging as a beneficial tool for scoring disease risk and accurately targeting biopsies. Adding photoacoustic (PA) imaging to visualize abnormal vascularization and accumulation of contrast agents in tumors has potential for guiding focal therapies. In this work, we describe a new imaging platform that combines a transrectal micro-US system with transurethral light delivery for PA imaging.

View Article and Find Full Text PDF

Notwithstanding recanalization treatments in the acute stage of stroke, many survivors suffer long-term impairments. Physical rehabilitation is the only widely available strategy for chronic-stage recovery, but its optimization is hindered by limited understanding of its effects on brain structure and function. Using micro-ultrasound, behavioral testing, and electrophysiology, we investigated the impact of skilled reaching rehabilitation on cerebral hemodynamics, motor function, and neuronal activity in a rat model of focal ischemic stroke.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effectiveness of contrast-enhanced endobronchial ultrasound (CE-EBUS) in imaging microbubbles (MBs) for diagnosing non-small cell lung cancer by comparing it to other ultrasound systems.
  • Using both in vitro (lab settings) and in vivo (live mice) experiments, the CE-EBUS demonstrated a similar ability to generate contrast-to-tissue ratios compared to clinical and pre-clinical systems.
  • The results suggest that CE-EBUS may be a viable option for imaging lymph nodes in lung cancer patients, offering diagnostic quality comparable to established ultrasound technologies.
View Article and Find Full Text PDF

Superharmonic contrast imaging (SpHI) suppresses tissue clutter and allows high-contrast visualization of the vasculature. An array-based dual-frequency (DF) probe has been developed for SpHI, integrating a 21-MHz, 256-element microultrasound imaging array with a 2-MHz, 32-element array to take advantage of the broadband nonlinear responses from microbubble (MB) contrast agents. In this work, ultrafast imaging with plane waves was implemented for SpHI to increase the acquisition frame rate.

View Article and Find Full Text PDF

Catheter based procedures are typically guided by X-Ray, which suffers from low soft tissue contrast and only provides 2D projection images of a 3D volume. Intravascular ultrasound (IVUS) can serve as a complementary imaging technique. Forward viewing catheters are useful for visualizing obstructions along the path of the catheter.

View Article and Find Full Text PDF

Ultrafast ultrasound imaging enables the visualization of rapidly changing blood flow dynamics in the chambers of the heart. Singular value decomposition (SVD) filters outperform conventional high pass clutter rejection filters for ultrafast blood flow imaging of small and shallow fields of view (e.g.

View Article and Find Full Text PDF

Acoustic properties of biomaterials and engineered tissues reflect their structure and cellularity. High-frequency ultrasound (US) can non-invasively characterize and monitor these properties with sub-millimetre resolution. We present an approach to estimate the speed of sound, acoustic impedance, and acoustic attenuation of cell-laden hydrogels that accounts for frequency-dependent effects of attenuation in coupling media, hydrogel thickness, and interfacial transmission/reflection coefficients of US waves, all of which can bias attenuation estimates.

View Article and Find Full Text PDF

Microultrasound (micro-US) has become an invaluable tool for preclinical research and in emerging applications in clinical diagnosis and treatment guidance. Several such applications can benefit from arrays with a small footprint and endoscopic form factor. However, critical challenges arise in making electrical connections to array elements in such spatial constraints.

View Article and Find Full Text PDF

Ultrasound molecular imaging (USMI) is a technique used to noninvasively estimate the distribution of molecular markers by imaging microbubble contrast agents (MCAs) that have been modified to target receptors of interest on the vascular endothelium. USMI is especially relevant for preclinical and clinical cancer research and has been used to predict tumor malignancy and response to treatment. In the last decade, methods that improve the resolution of contrast-enhanced ultrasound by an order of magnitude and allow researchers to noninvasively image individual capillaries have emerged.

View Article and Find Full Text PDF

Background: Nerve damage is consistently demonstrated after subepineural injection in animal studies, but not after purposeful injection in patients participating in clinical studies. There is a need to better visualise nerves in order to understand the structural changes that occur during subepineural injection.

Methods: We scanned the brachial plexuses of three anaesthetised pigs using micro-ultrasound imaging (55-22 MHz probe), inserted 21 gauge block needles into the radial, median, and axillary nerves, and injected two 0.

View Article and Find Full Text PDF

Introduction: Although administration of regional anesthesia nerve blocks has increased during the COVID-19 pandemic, training opportunities in regional anesthesia have reduced. Simulation training may enhance skills, but simulators must be accurate enough for trainees to engage in a realistic way-for example, detection of excessive injection pressure. The soft-embalmed Thiel cadaver is a life-like, durable simulator that is used for dedicated practice and mastery learning training in regional anesthesia.

View Article and Find Full Text PDF

Acoustic angiography is a superharmonic contrast-enhanced ultrasound imaging method that produces high-resolution, 3-D maps of the microvasculature. Previous acoustic angiography studies have used twoelement, annular,mechanicallyactuated transducers(called "wobblers") to image microvasculature in preclinical tumor models with high contrast-to-tissue ratio and resolution, but these earlywobbler transducerscould not achieve the depth and sensitivity required for clinical acoustic angiography. In this work, we present a system for performing acoustic angiography with a novel dual-frequency(DF) transducer-a coaxially stacked DF array (DFA).

View Article and Find Full Text PDF

Quantitative Doppler ultrasound of the carotid artery has been proposed as an instantaneous surrogate for monitoring rapid changes in left ventricular output. Tracking immediate changes in the arterial Doppler spectrogram has value in acute care settings such as the emergency department, operating room and critical care units. We report a novel, hands-free, continuous-wave Doppler ultrasound patch that adheres to the neck and tracks Doppler blood flow metrics in the common carotid artery using an automated algorithm.

View Article and Find Full Text PDF

Superharmonic imaging with dual-frequency imaging systems uses conventional low-frequency ultrasound transducers on transmit, and high-frequency transducers on receive to detect higher order harmonic signals from microbubble contrast agents, enabling high-contrast imaging while suppressing clutter from background tissues. Current dual-frequency imaging systems for superharmonic imaging have been used for visualizing tumor microvasculature, with single-element transducers for each of the low- and high-frequency components. However, the useful field of view is limited by the fixed focus of single-element transducers, while image frame rates are limited by the mechanical translation of the transducers.

View Article and Find Full Text PDF

There has been growing interest in nanobubbles (NBs) for vascular and extravascular ultrasound contrast imaging and therapeutic applications. Studies to date have generally utilized low frequencies (<12 MHz), high concentrations (>10 mL), and uncalibrated B-mode or contrast-mode on commercial systems without reporting investigations on NB signatures upon which the imaging protocols should be based. We recently demonstrated that low concentrations (10 mL) of porphyrin-lipid-encapsulated NBs scatter nonlinearly at low (2.

View Article and Find Full Text PDF

Emerging contrast imaging studies have highlighted the potential of nanobubbles for both intravascular and extravascular applications. Reports to date on nanobubbles have generally utilized low frequencies (<12 MHz), high concentrations (>10 mL), and B-mode or contrast-mode on preclinical and clinical systems. However, none of these studies directly examined nanobubble acoustic signatures systematically to implement nonlinear imaging schemes in a methodical manner based on nanobubble behaviour.

View Article and Find Full Text PDF

A new photoacoustic (PA) dye was developed as a simple-to-use reagent for creating targeted PA imaging agents. The lead molecule was prepared via an efficient two-step synthesis from an inexpensive commercially available starting material. With the dye's innate albumin-binding properties, the resulting tetrazine-derived dye is capable of localizing to tumor and exhibits a biological half-life of a few hours, allowing for an optimized distribution profile.

View Article and Find Full Text PDF

Recent advances in high frame rate biomedical ultrasound have led to the development of ultrasound localization microscopy (ULM), a method of imaging microbubble (MB) contrast agents beyond the diffraction limit of conventional coherent imaging techniques. By localizing and tracking the positions of thousands of individual MBs, ultrahigh resolution vascular maps are generated which can be further analyzed to study disease. Isolating bubble echoes from tissue signal is a key requirement for super-resolution imaging which relies on the spatiotemporal separability and localization of the bubble signals.

View Article and Find Full Text PDF

Gas vesicles (GVs) are nanosized structures (45-800 nm) and have been reported to produce non-linear contrast signals, making them an attractive agent for molecular targeting of tumors. One barrier to their use for pre-clinical oncology studies is rapid uptake into the reticuloendothelial system (RES) and consequent rapid decrease in contrast signal after infusion ends and low signal on reperfusion after a bubble burst sequence. The purpose of this study was to examine suppression of the RES and surface modification of GVs to prolong contrast circulation in tumors for ultrasound imaging.

View Article and Find Full Text PDF

Purpose: Blood-brain barrier disruption (BBBD) is of interest for treating neurodegenerative diseases and tumors by enhancing drug delivery. Focused ultrasound (FUS) is a powerful method to alleviate BBB challenges; however, the detection of BBB opening by non-invasive methods remains limited. The purpose of this work is to demonstrate that 3D transcranial color Doppler (3DCD) and photoacoustic imaging (PAI) combined with custom-made nanoparticle (NP)-mediated FUS delivery can detect BBBD in mice.

View Article and Find Full Text PDF

Superharmonic imaging is an ultrasound contrast imaging technique that differentiates microbubble echoes from tissue through detection of higher-order bubble harmonics in a broad frequency range well above the excitation frequency. Application of superharmonic imaging in three dimensions allows specific visualization of the tissue microvasculature with high resolution and contrast, a technique referred to as acoustic angiography. Because of the need to transmit and receive across a bandwidth that spans up to the fifth harmonic of the fundamental and higher, this imaging approach requires imaging probes comprising dedicated transducers for transmit and receive.

View Article and Find Full Text PDF

Video capsule endoscopy (VCE) has significantly advanced visualization of the gastrointestinal tract since its introduction in the last 20 years. Work is now under way to combine VCE with microultrasound imaging. However, small maximum capsule dimensions, coupled with the electronics required to integrate ultrasound imaging capabilities, pose significant design challenges.

View Article and Find Full Text PDF