Publications by authors named "Christine Deisl"

Medial vascular calcification in chronic kidney disease (CKD) involves pro-inflammatory pathways induced by hyperphosphatemia. Several interleukin 6 family members have been associated with pro-calcific effects in vascular smooth muscle cells (VSMCs) and are considered as therapeutic targets. Therefore, we investigated the role of leukemia inhibitory factor (LIF) during VSMC calcification.

View Article and Find Full Text PDF

Clathrin/dynamin-independent endocytosis of ordered plasma membrane domains (rdered embrane omain ndocytosis, OMDE) can become massive in response to cytoplasmic Ca elevations, G protein activation by non-hydrolyzable GTP analogs, and enhanced oxidative metabolism. In patch-clamped murine bone marrow macrophages (BMMs), cytoplasmic succinate and pyruvate, but not β-hydroxybutyrate, induce OMDE of 75% of the plasma membrane within 2 min. The responses require palmitoylation of membrane proteins, being decreased by 70% in BMMs lacking the acyltransferase, DHHC5, by treatment with carnitine to shift long-chain acyl groups from cytoplasmic to mitochondrial acyl-CoAs, by bromopalmitate/albumin complexes to block DHHCs, and by the mitochondria-specific cyclosporin, NIM811, to block permeability transition pores that may release mitochondrial coenzyme A into the cytoplasm.

View Article and Find Full Text PDF

Using optical and electrical methods, we document that diffusion in the cytoplasm of BL6 murine cardiomyocytes becomes restricted >20-fold as molecular weight increases from 30 to 2,000, roughly as expected for pores with porin channel dimensions. Bodipy-FL ATP diffuses >40-fold slower than in free water at 25°C. From several fluorophores analyzed, bound fluorophore fractions range from 0.

View Article and Find Full Text PDF

Significance Statement: Thiazide diuretics (thiazides) are among the most widely prescribed drugs worldwide, but their use is associated with glucose intolerance and new-onset diabetes mellitus. The molecular mechanisms remain elusive. Our study reveals that thiazides attenuate insulin secretion through inhibition of the mitochondrial carbonic anhydrase isoform 5b (CA5b) in pancreatic β cells.

View Article and Find Full Text PDF

Using both optical and electrical methods, we document that solute diffusion in the cytoplasm of BL6 murine cardiac myocytes becomes restricted >30-fold as molecular weight increases from 30 to 2000, roughly as expected for pores with dimensions of cardiac porin channels. The Bodipy-FL ATP analogue diffuses ∼50-fold slower in BL6 cardiac cytoplasm than in free water. From several fluorophores analyzed, our estimates of bound fluorophore fractions range from 0.

View Article and Find Full Text PDF

P2-type ATPase sodium-potassium pumps (Na/K-ATPases) are ion-transporting enzymes that use ATP to transport Na and K on opposite sides of the lipid bilayer against their electrochemical gradients to maintain ion concentration gradients across the membranes in all animal cells. Despite the available molecular architecture of the Na/K-ATPases, a complete molecular mechanism by which the Na and K ions access into and are released from the pump remains unknown. Here we report five cryo-electron microscopy (cryo-EM) structures of the human alpha3 Na/K-ATPase in its cytoplasmic side-open (E1), ATP-bound cytoplasmic side-open (E1•ATP), ADP-AlF trapped Na-occluded (E1•P-ADP), BeF trapped exoplasmic side-open (E2P) and MgF trapped K-occluded (E2•P) states.

View Article and Find Full Text PDF

Cells can expand their plasma membrane laterally by unfolding membrane undulations and by exocytosis. Here, we describe a third mechanism involving invaginations held shut by the membrane adapter, dynamin. Compartments open when Ca activates the lipid scramblase, TMEM16F, anionic phospholipids escape from the cytoplasmic monolayer in exchange for neutral lipids, and dynamins relax.

View Article and Find Full Text PDF

NHA2 is a sodium/proton exchanger associated with arterial hypertension in humans, but the role of NHA2 in kidney function and blood pressure homeostasis is currently unknown. Here we show that NHA2 localizes almost exclusively to distal convoluted tubules in the kidney. NHA2 knock-out mice displayed reduced blood pressure, normocalcemic hypocalciuria and an attenuated response to the thiazide diuretic hydrochlorothiazide.

View Article and Find Full Text PDF

Human embryonic stem cell-derived cardiomyocytes develop pronounced hypertrophy in response to angiotensin-2, endothelin-1, and a selected mix of three fatty acids. All three of these responses are accompanied by increases in both basal cytoplasmic Ca and diacylglycerol, quantified with the Ca sensor Fluo-4 and a FRET-based diacylglycerol sensor expressed in these cardiomyocytes. The heart glycoside, ouabain (30 nM), and a recently developed inhibitor of diacylglycerol lipases, DO34 (1 μM), cause similar hypertrophy responses, and both responses are accompanied by equivalent increases of basal Ca and diacylglycerol.

View Article and Find Full Text PDF

Large endocytic responses can occur rapidly in diverse cell types without dynamins, clathrin, or actin remodeling. Our experiments suggest that membrane phase separations are crucial with more ordered plasma membrane domains being internalized. Not only do these endocytic processes rely on coalescence of membrane domains, they are promoted by participation of membrane proteins in such domains, one important regulatory influence being palmitoylation.

View Article and Find Full Text PDF

Lipids influence powerfully the function of ion channels and transporters in two well-documented ways. A few lipids act as bona fide second messengers by binding to specific sites that control channel and transporter gating. Other lipids act nonspecifically by modifying the physical environment of channels and transporters, in particular the protein-membrane interface.

View Article and Find Full Text PDF

We previously demonstrated that the sodium/hydrogen exchanger NHA2, also known as NHEDC2 or SLC9B2, is critical for insulin secretion by β-cells. To gain more insights into the role of NHA2 on systemic glucose homeostasis, we studied the impact of loss of NHA2 during the physiological aging process and in the setting of diet-induced obesity. While glucose tolerance was normal at 2 months of age, NHA2 KO mice displayed a significant glucose intolerance at 5 and 12 months of age, respectively.

View Article and Find Full Text PDF

Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved.

View Article and Find Full Text PDF

A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family.

View Article and Find Full Text PDF

Purpose Of Review: Sodium/hydrogen exchangers (NHEs) are a large family of transport proteins catalyzing the exchange of cations for protons across lipid bilayer membranes. Several isoforms are expressed in β cells of the endocrine pancreas, including the recently discovered and poorly characterized isoform NHA2. This review will summarize advances in our understanding of the roles of NHEs in the regulation of insulin secretion in β cells.

View Article and Find Full Text PDF

NHA2 is a sodium/hydrogen exchanger with unknown physiological function. Here we show that NHA2 is present in rodent and human β-cells, as well as β-cell lines. In vivo, two different strains of NHA2-deficient mice displayed a pathological glucose tolerance with impaired insulin secretion but normal peripheral insulin sensitivity.

View Article and Find Full Text PDF