Publications by authors named "Christine Debarbadillo"

A novel integrated pilot-scale A-stage high rate activated sludge, B-stage short-cut biological nitrogen removal and side-stream enhanced biological phosphorus removal (A/B-shortcut N-S2EBPR) process for treating municipal wastewater was demonstrated with the aim to achieve simultaneous and carbon- and energy-efficient N and P removal. In this studied period, an average of 7.62 ± 2.

View Article and Find Full Text PDF

While the adsorption/bio-oxidation (A/B) process has been widely studied for carbon capture and shortcut nitrogen (N) removal, its integration with enhanced biological phosphorus (P) removal (EBPR) has been considered challenging and thus unexplored. Here, full-scale pilot testing with an integrated system combining A-stage high-rate activated sludge with B-stage partial (de)nitrification/anammox and side-stream EBPR (HRAS-P(D)N/A-S2EBPR) was conducted treating real municipal wastewater. The results demonstrated that, despite the relatively low influent carbon load, the B-stage P(D)N-S2EBPR system could achieve effective P removal performance, with the carbon supplement and redirection of the A-stage sludge fermentate to the S2EBPR.

View Article and Find Full Text PDF

This study successfully revealed the importance of probe reliability and sensitivity with ion sensitive electrode (ISE) probes on achieving high partial denitrification (PdN) efficiency; and decreasing carbon overdosing events that cause the decline of microbial populations and performance of PdNA. In a mainstream integrated hybrid granule-floc system, an average PdN efficiency of 76% was achieved with acetate as the carbon source. Thauera was identified as the dominant PdN species; its presence in the system was analogous to instrumentation reliability and PdN selection and was not a consequence of bioaugmentation.

View Article and Find Full Text PDF

High-rate activated sludge (HRAS) systems suffer from high variability of effluent quality, clarifier performance, and carbon capture. This study proposed a novel control approach using bioflocculation boundaries for wasting control strategy to enhance effluent quality and stability while still meeting carbon capture goals. The bioflocculation boundaries were developed based on the oxygen uptake rate (OUR) ratio between contactor and stabilizer (feast/famine) in a high-rate contact stabilization (CS) system and this OUR ratio was used to manipulate the wasting setpoint.

View Article and Find Full Text PDF

This study focused on evaluating the feasibility of expanded clay and sand as media types for mainstream partial denitrification-anammox (PdNA) in deep-bed single-media polishing filters under nitrogen and solids loading rates as well as backwash conditions similar to conventional denitrification filters. The surface roughness and iron content of the expanded clay were hypothesized to allow for enhanced anammox retention, nitrogen removal rates, and runtimes. However, under the tested loading rates and backwash conditions, no clear benefit of expanded clay was observed compared with conventional sand.

View Article and Find Full Text PDF

Retrofitting conventional denitrification filters into partial denitrification-anammox (PdNA)- or anammox (AnAOB)-based filters will reduce the needs for external carbon addition. The success of AnAOB-based filters depends on anammox growth and retention within such filters. Studies have overlooked the importance of media selection and its impact on AnAOB capacity, head loss progression dynamics, and shear conditions applied onto the AnAOB biofilm.

View Article and Find Full Text PDF

This research examined the feasibility of raw fermentate for mainstream partial denitrification-anammox (PdNA) in a pre-anoxic integrated fixed-film activated sludge (IFAS) process. Fermentate quality sampled from a full-scale facility was highly dynamic, with 360-940 mg VFA-COD/L and VFA/soluble COD ratios ranging from 24% to 48%. This study showed that PdNA selection could be achieved even when using low quality fermentate.

View Article and Find Full Text PDF

Primary sludge fermentate, a concentrated hydrolyzed wastewater carbon, was evaluated for use as an alternative carbon source for mainstream partial denitrification-anammox (PdNA) in a suspended growth activated sludge process in terms of partial denitrification (PdN) efficiency, PdNA nitrogen removal contributions, and final effluent quality. Fermenter operation at a 2-day sludge retention time (SRT) resulted in the maximum achievable yield of 0.14 ± 0.

View Article and Find Full Text PDF

Despite the increased research efforts, full-scale implementation of shortcut nitrogen removal strategies has been challenged by the lack of consistent nitrite-oxidizing bacteria out-selection. This paper proposes an alternative path using partial denitrification (PdN) selection coupled with anaerobic ammonium-oxidizing bacteria (AnAOB). A nitrate residual concentration (>2 mg N/L) was identified as the crucial factor for metabolic PdN selection using acetate as a carbon source, unlike the COD/N ratio which was often suggested.

View Article and Find Full Text PDF

The thermal hydrolysis process (THP) is applied to enhance biogas production in anaerobic digestion (AD), reduce viscosity for improved mixing and dewatering and to reduce and sterilize cake solids. Large heat demands for steam production rely on dynamic effects like sludge throughput, gas availability and THP process parameters. Here, we propose a combined energy and process model suitable to describe the dynamic behaviour of THP in a full-plant context.

View Article and Find Full Text PDF

In this study, concurrent operation of anammox and partial denitrification within a nonacclimated mixed culture system was proposed. The impact of carbon sources (acetate, glycerol, methanol, and ethanol) and COD/NO3 -N ratio on partial denitrification selection under both short- and long-term operations was investigated. Results from short-term testing showed that all carbon sources supported partial denitrification.

View Article and Find Full Text PDF

Treatment of sewage sludge with a thermal hydrolysis process (THP) followed by anaerobic digestion (AD) enables to boost biogas production and minimize residual sludge volumes. However, the reject water can cause inhibition to aerobic and anoxic ammonium-oxidizing bacteria (AerAOB & AnAOB), the two key microbial groups involved in the deammonification process. Firstly, a detailed investigation elucidated the impact of different organic fractions present in THP-AD return liquor on AerAOB and AnAOB activity.

View Article and Find Full Text PDF

The impact of methanol (CHOH) as a source of anthropogenic carbon dioxide (CO) in denitrification at wastewater treatment plants (WWTPs) has never been quantified. CHOH is the most commonly purchased carbon source for sewage denitrification. Until recently, greenhouse gas (GHG) reporting protocols consistently ignored the liberation of anthropogenic CO attributable to CHOH.

View Article and Find Full Text PDF

Water-quality standards requiring simultaneous low level effluent N and P concentrations are increasingly common in Europe and the United States of America. Moving bed biofilm reactors (MBBRs) and biologically active filters (BAFs) have been used as post-denitrification biofilm reactors in processes designed and operated for this purpose (Boltz et al., 2010a).

View Article and Find Full Text PDF