Publications by authors named "Christine Couturier"

The Alaska blackfish (Dallia pectoralis) is the only air-breathing fish in the Arctic. In the summer, a modified esophagus allows the fish to extract oxygen from the air, but this behavior is not possible in the winter because of ice and snow cover. The lack of oxygen (hypoxia) and near freezing temperatures in winter is expected to severely compromise metabolism, and yet remarkably, overwintering Alaska blackfish remain active.

View Article and Find Full Text PDF

In anoxia-sensitive mammals, hypoxia inducible factor (HIF) promotes cellular survival in hypoxia, but also tumorigenesis. By comparison, anoxia-tolerant vertebrates likely need to circumvent a prolonged upregulation of HIF to survive long-term anoxia, making them attractive biomedical models for investigating HIF regulation. To lend insight into the role of HIF in anoxic Trachemys scripta ventricle and telencephalon, 21 °C- and 5 °C-acclimated turtles were exposed to normoxia, anoxia (24 h at 21 °C; 24 h or 14 d at 5 °C) or anoxia + reoxygenation and the gene expression of HIF-1α (hif1a) and HIF-2α (hif2a), two regulators of HIF, and eleven putative downstream targets of HIF quantified by qPCR.

View Article and Find Full Text PDF

The Alaska blackfish () is a facultative air-breather endemic to northern latitudes where it remains active in winter under ice cover in cold hypoxic waters. To understand the changes in cellular Ca cycling that allow the heart to function in cold hypoxic water, we acclimated Alaska blackfish to cold (5 °C) normoxia or cold hypoxia (2.1-4.

View Article and Find Full Text PDF

The Alaska blackfish () remains active at cold temperatures when experiencing aquatic hypoxia without air access. To discern the cardiophysiological adjustments that permit this behaviour, we quantified the effect of acclimation from 15°C to 5°C in normoxia (15N and 5N fish), as well as chronic hypoxic submergence (6-8 weeks; ∼6.3-8.

View Article and Find Full Text PDF

To lend insight into the potential role of the gasotransmitter hydrogen sulfide (HS) in facilitating anoxia survival of anoxia-tolerant vertebrates, we quantified the gene expression of the primary HS-synthesizing enzymes, 3-mercaptopyruvate sulfurtransferase (3MST), cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), in ventricle and brain of normoxic, anoxic and reoxygenated 21 °C- and 5 °C-acclimated freshwater turtles (Trachemys scripta) and 10 °C-acclimated crucian carp (Carassius carassius). Semi-quantitative Western blotting analysis was also conducted to assess 3MST and CBS protein abundance in ventricle and brain of 5 °C turtles and 10 °C crucian carp subjected to normoxia, anoxia and reoxygenation. We hypothesized that if HS was advantageous for anoxia survival, expression levels would remain unchanged or be upregulated with anoxia and/or reoxygenation.

View Article and Find Full Text PDF

We investigated if transcriptional responses are consistent with the arrest of synaptic activity in the anoxic turtle (Trachemys scripta) brain. Thirty-nine genes of key receptors, transporters, enzymes and regulatory proteins of inhibitory and excitatory neurotransmission were partially cloned and their expression in telencephalon of 21 °C- and 5 °C-acclimated normoxic, anoxic (24 h at 21 °C; 1 and 14 days at 5 °C) and reoxygenated (24 h at 21 °C; 13 days at 5 °C) turtles quantified by real-time RT-PCR. Gene expression was largely sustained with anoxia at 21 °C and 5 °C.

View Article and Find Full Text PDF

Crucian carp () survive without oxygen for several months, but it is unknown whether they are able to protect themselves from cell death normally caused by the absence, and particularly return, of oxygen. Here, we quantified cell death in brain tissue from crucian carp exposed to anoxia and re-oxygenation using the terminal deoxy-nucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and cell proliferation by immunohistochemical staining for proliferating cell nuclear antigen (PCNA) as well as PCNA mRNA expression. We also measured mRNA and protein expression of the apoptosis executer protease caspase 3, in laboratory fish exposed to anoxia and re-oxygenation and fish exposed to seasonal anoxia and re-oxygenation in their natural habitat over the year.

View Article and Find Full Text PDF

Increased internal ammonia (hyperammonemia) and ischemic/anoxic insults are known to result in a cascade of deleterious events that can culminate in potentially fatal brain swelling in mammals. It is less clear, however, if the brains of fishes respond to ammonia in a similar manner. The present study demonstrated that the crucian carp (Carassius carassius) was not only able to endure high environmental ammonia exposure (HEA; 2 to 22 mmol L(-1)) but that they experienced 30% increases in brain water content at the highest ammonia concentrations.

View Article and Find Full Text PDF

Increases in environmental temperature predicted to result from global warming have direct effects on performance of ectotherms. Moreover, cardiac function has been observed to limit the tolerance to high temperatures. Here we show that two wild populations of Atlantic salmon originating from northern and southern extremes of its European distribution have strikingly similar cardiac responses to acute warming when acclimated to common temperatures, despite different local environments.

View Article and Find Full Text PDF

Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in northern Papua New Guinea. Four species of damselfishes and two species of cardinal fishes were held for 14 days at 29, 31, 33, and 34 °C, which incorporated their existing thermal range (29-31 °C) as well as projected increases in ocean surface temperatures of up to 3 °C by the end of this century.

View Article and Find Full Text PDF

The aneural heart of the Pacific hagfish, Eptatretus stoutii, varies heart rate fourfold during recovery from anoxia. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which play an important role in establishing the pacemaker rate of vertebrate hearts, were postulated to be present in this ancestral vertebrate heart, and it was also theorized that changes in hagfish heart rate with oxygen availability involved altered HCN expression. Partial gene cloning revealed six HCN isoforms in the hagfish heart.

View Article and Find Full Text PDF

Ocean surface CO2 levels are increasing in line with rising atmospheric CO2 and could exceed 900μatm by year 2100, with extremes above 2000μatm in some coastal habitats. The imminent increase in ocean pCO2 is predicted to have negative consequences for marine fishes, including reduced aerobic performance, but variability among species could be expected. Understanding interspecific responses to ocean acidification is important for predicting the consequences of ocean acidification on communities and ecosystems.

View Article and Find Full Text PDF

The uptake of anthropogenic CO2 by the ocean has been suggested to impact marine ecosystems by decreasing the respiratory capacity of fish and other water breathers. We investigated the aerobic metabolic scope of the spiny damselfish, Acanthochromis polyacanthus, from the Great Barrier Reef, Australia when exposed for 17 days to CO2 conditions predicted for the end of the century (946 μatm CO2). Surprisingly, resting O2 consumption rates were significantly lower and maximal O2 consumption rates significantly higher in high-CO2-exposed fish compared with control fish (451 μatm CO2).

View Article and Find Full Text PDF

The mRNA expression of heat-shock protein 90 (HSP90) and heat-shock cognate 70 (HSC70) was examined in cardiac chambers and telencephalon of warm- (21°C) and cold-acclimated (5°C) turtles (Trachemys scripta) exposed to normoxia, prolonged anoxia or anoxia followed by reoxygenation. Additionally, the suitability of total RNA as well as mRNA from β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and cyclophilin A (PPIA) for normalizing gene expression data was assessed, as compared to the use of an external RNA control. Measurements of HSP90 and HSC70 mRNA expression revealed that anoxia and reoxygenation have tissue- and gene-specific effects.

View Article and Find Full Text PDF

This study is an attempt to gain an integrated understanding of the interactions between temperature, locomotion activity and metabolism in the European sea bass (Dicentrarchus labrax). To our knowledge this study is among the few that have investigated the influence of the seasonal changes in water temperature on swimming performance in fish. Using a Brett-type swim-tunnel respirometer the relationship between oxygen consumption and swimming speed was determined in fish acclimatised to 7, 11, 14, 18, 22, 26 and 30 degrees C.

View Article and Find Full Text PDF