Purpose: The purpose of this study was to critically test the hypothesis that mitochondrial pyruvate carrier (MPC) function is essential for maintenance of the corneal myofibroblast phenotype in vitro and in vivo.
Methods: Protein and mRNA for canonical profibrotic markers were assessed in cultured cat corneal myofibroblasts generated via transforming growth factor (TGF)-β1 stimulation and treated with either the thiazolidinedione (TZD) troglitazone or the MPC inhibitor alpha-cyano-beta-(1-phenylindol-3-yl) acrylate (UK-5099). RNA sequencing was used to gain insight into signaling modules related to instructive, permissive, or corollary changes in gene expression following treatment.
Recent work in vitro has shown that fibroblasts and myofibroblasts have opposing effects on neurite outgrowth by peripheral sensory neurons. Here, we tested a prediction from this work that dampening the fibrotic response in the early phases of corneal wound healing in vivo could enhance reinnervation after a large, deep corneal injury such as that induced by photorefractive keratectomy (PRK). Since topical steroids and Mitomycin C (MMC) are often used clinically for mitigating corneal inflammation and scarring after PRK, they were ideal to test this prediction.
View Article and Find Full Text PDFAbnormal nerve regeneration often follows corneal injury, predisposing patients to pain, dry eye and vision loss. Yet, we lack a mechanistic understanding of this process. A key event in corneal wounds is the differentiation of keratocytes into fibroblasts and scar-forming myofibroblasts.
View Article and Find Full Text PDFPurpose: To compare the temperatures of the ocular surface, eyelid, and periorbital skin in normal eyes with Sjögren's syndrome (SS) eyes, evaporative dry eyes (EDE), and aqueous deficient dry eyes (ADDE).
Methods: 10 eyes were analyzed in each age-matched group (normal, SS, EDE, and ADDE). A noninvasive infrared thermal camera captured two-dimensional images in three regions of interest (ROI) in each of three areas: the ocular surface, the upper eyelid, and the periorbital skin within a controlled environmental chamber.
Purpose: The aim was to assess the visual impact of ocular wavefront aberrations, corneal thickness, and corneal light scatter prospectively after performing a Descemet stripping automated endothelial keratoplasty (DSAEK) in humans.
Methods: Data were obtained prospectively from 20 eyes preoperatively and at 1, 3, 6, and 12 months post-DSAEK. At each visit, the best spectacle-corrected visual acuity and visual acuity with glare (brightness acuity testing) were recorded, and ocular wavefront measurements and corneal optical coherence tomography (OCT) were performed.
Purpose: To evaluate myofibroblast differentiation as an etiology of haze at the graft-host interface in a cat model of Descemet's Stripping Automated Endothelial Keratoplasty (DSAEK).
Methods: DSAEK was performed on 10 eyes of 5 adult domestic short-hair cats. In vivo corneal imaging with slit lamp, confocal, and optical coherence tomography (OCT) were performed twice weekly.