Context: Teprotumumab therapy for thyroid eye disease (TED) patients represents a major step forward. It targets and inhibits the insulin-like growth factor-1 receptor (IGF-1R), and its effectiveness is based on its interconnectedness with the thyrotropin receptor. However, IGF-1R has a ubiquitous expression and several adverse effects have been reported with teprotumumab use.
View Article and Find Full Text PDFProximity ligation assay (PLA) is a methodology that permits detection of protein-protein closeness, that is, proteins that are within 40 nanometers of each other, in cells or tissues at endogenous protein levels or after exogenous overexpression. It detects the protein(s) with high sensitivity and specificity because it employs a DNA hybridization step followed by DNA amplification. PLA has been used successfully with many types of proteins.
View Article and Find Full Text PDFContext: We previously presented evidence that TSH receptor (TSHR)-stimulating autoantibodies (TSAbs) bind to and activate TSHRs but do not bind to IGF1 receptors (IGF1Rs). Nevertheless, we showed that IGF1Rs were involved in thyroid eye disease (TED) pathogenesis because TSAbs activated crosstalk between TSHR and IGF1R. Teprotumumab, originally generated to inhibit IGF1 binding to IGF1R, was recently approved for the treatment of TED (Tepezza).
View Article and Find Full Text PDFThe pathogenesis of Graves' hyperthyroidism (GH) and associated Graves' orbitopathy (GO) appears to involve stimulatory autoantibodies (thyrotropin receptor [TSHR]-stimulating antibodies [TSAbs]) that bind to and activate TSHRs on thyrocytes and orbital fibroblasts. In general, measurement of circulating TSHR antibodies by clinical assays correlates with the status of GH and GO. However, most clinical measurements of TSHR antibodies use competitive binding assays that do not distinguish between TSAbs and antibodies that bind to but do not activate TSHRs.
View Article and Find Full Text PDFGraves' disease (GD) is an autoimmune disease caused in part by thyroid-stimulating antibodies (TSAbs) that activate the thyroid-stimulating hormone receptor (TSHR). In Graves' hyperthyroidism (GH), TSAbs cause persistent stimulation of thyroid cells leading to continuous thyroid hormone synthesis and secretion. Thyroid eye disease (TED), also called Graves' orbitopathy, is an orbital manifestation of GD.
View Article and Find Full Text PDFIn this review, we summarize the evidence against direct stimulation of insulin-like growth factor 1 receptors (IGF1Rs) by autoantibodies in Graves' orbitopathy (GO) pathogenesis. We describe a model of thyroid-stimulating hormone (TSH) receptor (TSHR)/IGF1R crosstalk and present evidence that observations indicating IGF1R's role in GO could be explained by this mechanism. We evaluate the evidence for and against IGF1R as a direct target of stimulating IGF1R antibodies (IGF1RAbs) and conclude that GO pathogenesis does not involve directly stimulating IGF1RAbs.
View Article and Find Full Text PDFThyrotropin hormone (TSH) was reported to exhibit biphasic regulation of cAMP production in human thyroid slices; specifically, upregulation at low TSH doses transitioning to inhibition at high doses. We observed this phenomenon in HEK293 cells overexpressing TSH receptors (TSHRs) but in only 25% of human thyrocytes (hThyros) . Because TSHR expression in hThyros was low, we tested the hypothesis that high, levels of TSHRs were needed for biphasic cAMP regulation.
View Article and Find Full Text PDFIncreasing evidence of interdependence between G protein-coupled receptors and receptor tyrosine kinase signaling pathways has prompted reevaluation of crosstalk between these receptors in disease and therapy. Investigations into thyroid-stimulating hormone (TSH) and insulin-like growth factor 1 (IGF1) receptor crosstalk, and its application to the clinic have in particular shown recent progress. In this review, we summarize current insights into the mechanism of TSH/IGF1 receptor crosstalk.
View Article and Find Full Text PDFThe thyrotropin (TSH) receptor (TSHR) signals via G proteins of all four classes and -arrestin 1. Stimulation of TSHR leads to increasing cAMP production that has been reported as a monotonic dose-response curve that plateaus at high TSH doses. In HEK 293 cells overexpressing TSHRs (HEK-TSHR cells), we found that TSHR activation exhibits an "inverted U-shaped dose-response curve" with increasing cAMP production at low doses of TSH and decreased cAMP production at high doses (>1 mU/ml).
View Article and Find Full Text PDFEndogenously expressed TSH receptors (TSHRs) on orbital fibroblasts of patients with Graves ophthalmopathy (GO) use crosstalk with IGF1 receptors (IGF1R) to synergistically stimulate secretion of hyaluronan (HA), a major component of GO pathology. We previously showed crosstalk occurred upstream of mitogen-activated protein kinase (ERK) phosphorylation. Because other G protein-coupled receptors engage arrestin-β-1 (ARRB1) and ERK, we tested whether ARRB1 was a necessary component of TSHR/IGF1R crosstalk.
View Article and Find Full Text PDFThyroid stimulating hormone and insulin-like growth factor 1 receptors (TSHRs and IGF1Rs, respectively) interact leading to additive or synergistic stimulation of cellular responses. Recent findings provide evidence that the interaction between TSHRs and IGF1Rs is similar to that described for other G protein-coupled receptors and receptor tyrosine kinases. These types of interactions occur at or proximal to the receptors and are designated "receptor cross-talk.
View Article and Find Full Text PDFBackground: Graves' ophthalmopathy (GO) pathogenesis involves thyrotropin (TSH) receptor (TSHR)-stimulating autoantibodies. Whether there are autoantibodies that directly stimulate insulin-like growth factor 1 receptors (IGF-1Rs), stimulating insulin-like growth factor receptor antibodies (IGFRAbs), remains controversial. This study attempted to determine whether there are stimulating IGFRAbs in patients with GO.
View Article and Find Full Text PDFWe previously showed that thyrotropin (TSH)/insulinlike growth factor (IGF)-1 receptor cross-talk appears to be involved in Graves' orbitopathy (GO) pathogenesis and upregulation of thyroid-specific genes in human thyrocytes. In orbital fibroblasts from GO patients, coadministration of TSH and IGF-1 induces synergistic increases in hyaluronan secretion. In human thyrocytes, TSH plus IGF-1 synergistically increased expression of the sodium-iodide symporter that appeared to involve ERK1/2 activation.
View Article and Find Full Text PDFBackground And Purpose: Crosstalk between thyrotropin (TSH) receptors and insulin-like growth factor 1 (IGF-1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF-1 receptor-dependent and -independent pathways. Although an anti-IGF-1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF-1 versus TSH receptor signalling in GO pathogenesis.
View Article and Find Full Text PDFContext: The TSH receptor (TSHR) is considered the main target of stimulatory autoantibodies in the pathogenesis of Graves' ophthalmopathy (GO); however, it has been suggested that stimulatory IGF-1 receptor (IGF-1R) autoantibodies also play a role.
Objective: We previously demonstrated that a monoclonal stimulatory TSHR antibody, M22, activates TSHR/IGF-1R cross talk in orbital fibroblasts/preadipocytes obtained from patients with GO (GO fibroblasts [GOFs]). We show that cross talk between TSHR and IGF-1R, not direct IGF-1R activation, is involved in the mediation of GO pathogenesis stimulated by Graves' autoantibodies.
Context: There is no pathogenetically linked medical therapy for Graves' ophthalmopathy (GO). Lack of animal models and conflicting in vitro studies have hindered the development of such therapy. Recent reports propose that Graves' Igs bind to and activate thyrotropin receptors (TSHRs) and IGF-1 receptors (IGF-1Rs) on cells in orbital fat, stimulating hyaluronan (HA) secretion, a component of GO.
View Article and Find Full Text PDFExcess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size.
View Article and Find Full Text PDFQuestions of if and when protein structures change within cells pervade biology and include questions of how the cytoskeleton sustains stresses on cells--particularly in mutant versus normal cells. Cysteine shotgun labeling with fluorophores is analyzed here with mass spectrometry of the spectrin-actin membrane skeleton in sheared red blood cell ghosts from normal and diseased mice. Sheared samples are compared to static samples at 37 °C in terms of cell membrane intensity in fluorescence microscopy, separated protein fluorescence, and tryptic peptide modification in liquid chromatography-tandem mass spectrometry (LC-MS/MS).
View Article and Find Full Text PDFForce-bearing linkages between the cytoskeleton and extracellular matrix are clearly important to normal cell viability-as is evident in a disease such as Duchenne muscular dystrophy (DMD) which arises in the absence of the linkage protein dystrophin. Therapeutic approaches to DMD include antisense-mediated skipping of exons to delete nonsense mutations while maintaining reading frame, but the structure and stability of the resulting proteins are generally unclear. Here we use mass spectrometry to detect most dystrophin exons, and we express and physically characterize dystrophin "nano"-constructs based on multiexon deletions that might find use in a large percentage of DMD patients.
View Article and Find Full Text PDF