Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections and associated with lung infections in cystic fibrosis (CF) patients (Lyczak et al., Microbes Infect 2:1051-1060, 2000). Multiple drug-resistant P.
View Article and Find Full Text PDFThe initial step of biofilm formation is bacteria attachment to biotic or abiotic surfaces and other bacteria through intra or interspecies interactions. Adhesion can be influenced by physicochemical conditions of the environment, such as iron. There is no available mathematical model of bacterial attachment giving realistic initiation rather than random adhesion.
View Article and Find Full Text PDFPseudomonas aeruginosa is a Gram-negative bacterium which can cause serious infections among immune-depressed people including cystic fibrosis patients where it can colonize the lungs causing chronic infections. Iron is essential for P. aeruginosa and can be provided via three sources under aerobic conditions: its own siderophores pyochelin (PCH) and pyoverdine (PVD), xenosiderophores, or heme, respectively.
View Article and Find Full Text PDFWe described a microtiter plate-based method that was effectively tailored for testing gel formulations against oral multispecies biofilms established on peg-lids. This method lifts the limitations imposed mainly by the anaerobic nature of the targeted bacterial species and the viscous properties of the targeted treatments.
View Article and Find Full Text PDFThis minireview considers the disruption of the host-microbiota harmless symbiosis in the subgingival niche. The establishment of a chronic infection by subversion of a commensal microbiota results from a complex and multiparametric sequence of events. This review narrows down to the interplay between oxygen, iron and sulfide that can result in a vicious cycle that would favor peroxygenic and glutathione producing streptococci as well as sulfidogenic anaerobic pathogens in the subgingival niche.
View Article and Find Full Text PDFJ Microbiol Methods
October 2018
New growth media have been designed for the iron-controlled co-cultures of three oral bacteria. These media share a common core composition enabling the switch from mono- to co-cultures, and efficiently promote both planktonic and biofilm cultures of Porphyromonas gingivalis, Treponema denticola and Streptococcus gordonii.
View Article and Find Full Text PDFPorphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized.
View Article and Find Full Text PDFIsothiocyanates (ITCs) are natural plant products generated by the enzymic hydrolysis of glucosinolates found in Brassicaceae vegetables. These natural sulfur compounds and their dithiocarbamate conjugates have been previously evaluated for their anti-cancerous properties. Their antimicrobial properties have been previously studied as well, mainly for food preservation and plant pathogen control.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2013
Campylobacter jejuni is a widespread pathogen responsible for most of the food-borne gastrointestinal diseases in Europe. The use of natural antimicrobial molecules is a promising alternative to antibiotic treatments for pathogen control in the food industry. Isothiocyanates are natural antimicrobial compounds, which also display anticancer activity.
View Article and Find Full Text PDFTranscriptional regulation mediates adaptation of pathogens to environmental stimuli and is important for host colonization. The Campylobacter jejuni genome sequence reveals a surprisingly small set of regulators, mostly of unknown function, suggesting an intricate regulatory network. Interestingly, C.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2013
Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes.
View Article and Find Full Text PDFRecent Pat Antiinfect Drug Discov
November 2009
In the fight against pathogenic and opportunistic bacteria, development and spreading of resistance to antibiotics is an increasing public health problem. The available antibacterial treatments are becoming less and less effective, making urgent the discovery of new active molecules. One strategy that has been explored to bypass the bacterial adaptation to drugs is to target the iron metabolism of bacteria, since iron is critical for all bacteria to grow.
View Article and Find Full Text PDFColistin is an important cationic antimicrobial peptide (CAMP) in the fight against Pseudomonas aeruginosa infection in cystic fibrosis (CF) lungs. The effects of subinhibitory concentrations of colistin on gene expression in P. aeruginosa were investigated by transcriptome and functional genomic approaches.
View Article and Find Full Text PDFIn some Proteobacteria biogenesis of c-type cytochromes depends on the products of the ccmABCDEFG(H) genes, which encode inner-membrane proteins. Inactivation of some ccm genes, in particular ccmC, has an impact on other processes as well, including siderophore production and utilization. Non-polar insertions were generated in the Pseudomonas aeruginosa ccmA, ccmC, ccmE, ccmF and ccmH genes, and their impacts on different phenotypes were compared.
View Article and Find Full Text PDFThe importance of Csr post-transcriptional systems is gradually emerging; these systems control a variety of virulence-linked physiological traits in many pathogenic bacteria. This review focuses on the central role that Csr systems play in the pathogenesis of certain bacteria and in the establishment of successful infections in animal hosts. Csr systems appear to control the 'switch' between different physiological states in the infection process; for example switching pathogens from a colonization state to a persistence state.
View Article and Find Full Text PDFRsmA is a posttranscriptional regulatory protein in Pseudomonas aeruginosa that works in tandem with a small non-coding regulatory RNA molecule, RsmB (RsmZ), to regulate the expression of several virulence-related genes, including the N-acyl-homoserine lactone synthase genes lasI and rhlI, and the hydrogen cyanide and rhamnolipid biosynthetic operons. Although these targets of direct RsmA regulation have been identified, the full impact of RsmA on cellular activities is not as yet understood. To address this issue the transcriptome profiles of P.
View Article and Find Full Text PDFMolecules exuded by plant roots are thought to act as signals to influence the ability of microbial strains to colonize the roots and to survive in the rhizosphere. Differential bacterial responses to signals from different plant species may mediate the selection of specific rhizosphere populations. Very little, however, is known about the effects of plant exudates on patterns of bacterial gene expression.
View Article and Find Full Text PDFPhosphatidic acid (PA) is known to be a crucial phospholipid intermediate in cell membrane biosynthesis. In Escherichia coli, this molecule is produced from lysophosphatidic acid (LPA) by LPA acyltransferase (EC 2.3.
View Article and Find Full Text PDFChanges in the cellular envelope are major physiological adaptations that occur when micro-organisms encounter extreme environmental conditions. An appropriate degree of membrane fluidity is crucial for survival, and alteration of membrane lipids is an essential adaptive response. Emerging data suggest that microbial cells may recognize alterations in their membrane viscosity resulting from certain environmental changes as a trigger for adaptive cellular responses.
View Article and Find Full Text PDFIn the alpha-, beta- and gamma-Proteobacteria, the so-called cytochrome c maturation (Ccm) system is known to promote the covalent attachment of the haem to periplasmic apocytochrome c. However, in species of Pseudomonas, Rhizobium, Paracoccus and Legionella, mutations in ccm genes result in phenotypes that cannot be readily explained by the simple loss of a c-type cytochrome. These phenotypes include loss of siderophore production and utilization, reduced abilities to grow in low-iron conditions and in mammalian and protozoan host cells, and alterations in copper sensitivity and manganese oxidation.
View Article and Find Full Text PDF2,4-Diacetylphloroglucinol (PHL) is the primary determinant of the biological control activity of Pseudomonas fluorescens F113. The operon phlACBD encodes enzymes responsible for PHL biosynthesis from intermediate metabolites. The phlE gene, which is located downstream of the phlACBD operon, encodes a putative permease suggested to be a member of the major facilitator superfamily with 12 transmembrane segments.
View Article and Find Full Text PDFTo cope with iron deficiency fluorescent pseudomonads produce pyoverdines which are complex peptidic siderophores that very efficiently scavenge iron. In addition to pyoverdine some species also produce other siderophores. Recently, it was shown that Pseudomonas fluorescens ATCC 17400 produces the siderophore quinolobactin, an 8-hydroxy-4-methoxy-2-quinoline carboxylic acid (Mossialos, D.
View Article and Find Full Text PDFThe cytoplasmic membrane protein CcmC is, together with other Ccm proteins, a component for the maturation of c-type cytochromes in Gram-negative bacteria. A Pseudomonas fluorescens ATCC 17400 ccmC mutant is cytochrome c-deficient and shows considerably reduced production of the two siderophores pyoverdine and quinolobactin, paralleled by a general inability to utilize various iron sources, with the exception of haem. The ccmC mutant accumulates in a 5-aminolevulinic acid-dependent synthesis a reddish, fluorescent pigment identified as protoporphyrin IX.
View Article and Find Full Text PDFPseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I-III), but only the FpvA receptor for type I is known.
View Article and Find Full Text PDFPyocins are produced by more than 90% of Pseudomonas aeruginosa strains and each strain may synthesise several pyocins. The pyocin genes are located on the P. aeruginosa chromosome and their activities are inducible by mutagenic agents such as mitomycin C.
View Article and Find Full Text PDF