Publications by authors named "Christine A Rygiel"

Article Synopsis
  • Maternal exposure to environmental chemicals like lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) can lead to harmful health effects in offspring, potentially through epigenetic changes that may vary by tissue type and sex.
  • The study analyzed DNA methylation changes in cerebral cortex, blood, and liver tissues of female mice exposed to Pb and DEHP during critical developmental periods.
  • Results showed the cortex had the highest number of differentially methylated regions, indicating significant impacts on gene regulation, particularly affecting imprinted genes across different tissues and sexes due to chemical exposure.
View Article and Find Full Text PDF

Background: Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications.

Objective: We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver.

View Article and Find Full Text PDF

The developing epigenome changes rapidly, potentially making it more sensitive to toxicant exposures. DNA modifications, including methylation and hydroxymethylation, are important parts of the epigenome that may be affected by environmental exposures. However, most studies do not differentiate between these two DNA modifications, possibly masking significant effects.

View Article and Find Full Text PDF

Background: Gestational lead (Pb) exposure can adversely affect offspring health through multiple mechanisms, including epigenomic alterations via DNA methylation (5mC) and hydroxymethylation (5hmC), an intermediate in oxidative demethylation. Most current methods do not distinguish between 5mC and 5hmC, limiting insights into their individual roles.

Objective: Our study sought to identify the association of trimester-specific (T1, T2, T3) prenatal Pb exposure with 5mC and 5hmC levels at multiple cytosine-phosphate-guanine sites within gene regions previously associated with prenatal Pb (, , , in whole blood leukocytes of children ages 11-18 years of age.

View Article and Find Full Text PDF

Early-life lead (Pb) exposure has been linked to adverse neurodevelopmental outcomes. Recent evidence has indicated a critical role of DNA methylation (DNAm) in cognition, and Pb exposure has also been shown to alter DNAm. However, it is unknown whether DNAm is part of the mechanism of Pb neurotoxicity.

View Article and Find Full Text PDF

Di(2-ethylhexyl) phthalate (DEHP) is a type of phthalate plasticizer found in a variety of consumer products and poses a public health concern due to its metabolic and endocrine disruption activities. Dysregulation of epigenetic modifications, including DNA methylation, has been shown to be an important mechanism for the pathogenic effects of prenatal exposures, including phthalates. In this study, we used an established mouse model to study the effect of perinatal DEHP exposure on the DNA methylation profile in liver (a primary target tissue of DEHP) and blood (a common surrogate tissue) of both juvenile and adult mice.

View Article and Find Full Text PDF

Nanophthalmos is a rare condition defined by a small, structurally normal eye with resultant high hyperopia. While six genes have been implicated in this hereditary condition (MFRP, PRSS56, MYRF, TMEM98, CRB1,VMD2/BEST1), the relative contribution of these to nanophthalmos or to less severe high hyperopia (≥ + 5.50 spherical equivalent) has not been fully elucidated.

View Article and Find Full Text PDF

Early developmental environment can influence long-term health through reprogramming of the epigenome. Human environmental epigenetics studies rely on surrogate tissues, such as blood, to assess the effects of environment on disease-relevant but inaccessible target tissues. However, the extent to which environment-induced epigenetic changes are conserved between these tissues is unclear.

View Article and Find Full Text PDF

Lead (Pb) is a well-known toxicant that interferes with the development of a child's nervous and metabolic systems and increases the risk of developing diseases later in life. Although studies have investigated epigenetic effects associated with Pb exposure, knowledge of genome-wide changes with low dose perinatal Pb exposure in multiple tissues is limited. Within the Toxicant Exposures and Responses by Genomic and Epigenomic Regulators of Transcription (TaRGET II) consortium, we utilized a mouse model to investigate tissue- and sex-specific DNA methylation.

View Article and Find Full Text PDF

Gestational exposure to lead (Pb) adversely impacts offspring health through multiple mechanisms, one of which is the alteration of the epigenome including DNA methylation. This study aims to identify differentially methylated CpG sites associated with trimester-specific maternal Pb exposure in umbilical cord blood (UCB) leukocytes. Eighty-nine mother-child dyads from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) longitudinal birth cohorts with available UCB samples were selected for DNA methylation analysis via the Infinium Methylation EPIC BeadChip, which quantifies methylation at >850 000 CpG sites.

View Article and Find Full Text PDF