Background: Using a gene clustering strategy we determined intracellular pathway relationships within skeletal myotubes in response to an acute heat stress stimuli. Following heat shock, the transcriptome was analyzed by microarray in a temporal fashion to characterize the dynamic relationship of signaling pathways.
Results: Bioinformatics analyses exposed coordination of functionally-related gene sets, depicting mechanism-based responses to heat shock.
Stem cell differentiation is governed by extracellular signals that activate intracellular networks (or pathways) to drive phenotypic specification. Using a novel gene clustering strategy we determined pathway relationships from a genome-wide transcriptional dataset of skeletal myoblast differentiation. Established myogenic pathways, including cell contractility and cell-cycle arrest, were predicted with extreme statistical significance (p approximately 0).
View Article and Find Full Text PDF