The subventricular zone (SVZ) in the neonatal mammalian forebrain simultaneously generates olfactory interneurons, astrocytes, and oligodendrocytes. The molecular cues that enable SVZ progenitors to generate three distinct cell lineages without a temporal switching mechanism are not known. Here, we demonstrate that the basic helix-loop-helix transcription factor Olig2 plays a central role in this process.
View Article and Find Full Text PDFThe subventricular zone (SVZ) of the perinatal forebrain gives rise to both neurons and glia. The mechanisms governing the phenotypic specification of progenitors within this heterogeneous germinal zone are unclear. However, the characterization of subpopulations of SVZ cells has given us a better understanding of the basic architecture of the SVZ and presents us with the opportunity to ask more detailed questions regarding phenotype specification and cell fate.
View Article and Find Full Text PDFThe precise origins of postnatal subventricular zone (SVZ) cells are not known. Furthermore, the gliogenic potential of progenitors expressing Dlx genes that migrate ventrodorsally from the ganglionic eminences has not been explored in vivo. Here, we identify the embryonic origins of two distinct populations of postnatal SVZ cells: SVZ border cells, which express Zebrin II, and migratory cells in the central SVZ, which are generally devoid of Zebrin II expression (Staugaitis et al.
View Article and Find Full Text PDF