Cell transplantation is a promising therapeutic strategy for the treatment of traumatic muscle injury in humans. Previous investigations have typically focused on the identification of potent cell and growth factor treatments and optimization of spatial control over delivery. However, the optimal time point for cell transplantation remains unclear.
View Article and Find Full Text PDFSevere skeletal muscle injuries are common and can lead to extensive fibrosis, scarring, and loss of function. Clinically, no therapeutic intervention exists that allows for a full functional restoration. As a result, both drug and cellular therapies are being widely investigated for treatment of muscle injury.
View Article and Find Full Text PDFSkeletal muscle possesses a remarkable capacity for regeneration in response to minor damage, but severe injury resulting in a volumetric muscle loss can lead to extensive and irreversible fibrosis, scarring, and loss of muscle function. In early clinical trials, the intramuscular injection of cultured myoblasts was proven to be a safe but ineffective cell therapy, likely due to rapid death, poor migration, and immune rejection of the injected cells. In recent years, appropriate therapeutic cell types and culturing techniques have improved progenitor cell engraftment upon transplantation.
View Article and Find Full Text PDFBiological systems are exquisitely sensitive to the location and timing of physiologic cues and drugs. This spatiotemporal sensitivity presents opportunities for developing new therapeutic approaches. Polymer-based delivery systems are used extensively for attaining localized, sustained release of bioactive molecules.
View Article and Find Full Text PDFFerrogels are an attractive material for many biomedical applications due to their ability to deliver a wide variety of therapeutic drugs on-demand. However, typical ferrogels have yet to be optimized for use in cell-based therapies, as they possess limited ability to harbor and release viable cells. Previously, an active porous scaffold that exhibits large deformations and enhanced biological agent release under moderate magnetic fields has been demonstrated.
View Article and Find Full Text PDFMany cell types of therapeutic interest, including myoblasts, exhibit reduced engraftment if cultured prior to transplantation. This study investigated whether polymeric scaffolds that direct cultured myoblasts to migrate outwards and repopulate the host damaged tissue, in concert with release of angiogenic factors designed to enhance revascularizaton of the regenerating tissue, would enhance the efficacy of this cell therapy and lead to functional muscle regeneration. This was investigated in the context of a severe injury to skeletal muscle tissue involving both myotoxin-mediated direct damage and induction of regional ischemia.
View Article and Find Full Text PDFPorous biomaterials have been widely used as scaffolds in tissue engineering and cell-based therapies. The release of biological agents from conventional porous scaffolds is typically governed by molecular diffusion, material degradation, and cell migration, which do not allow for dynamic external regulation. We present a new active porous scaffold that can be remotely controlled by a magnetic field to deliver various biological agents on demand.
View Article and Find Full Text PDF