Human metapneumovirus (hMPV) is a major cause of acute respiratory infections in infants and older adults, for which no vaccines or therapeutics are available. The viral fusion (F) glycoprotein is required for entry and is the primary target of neutralizing antibodies; however, little is known about the humoral immune response generated from natural infection. Here, using prefusion-stabilized F proteins to interrogate memory B cells from two older adults, we obtain over 700 paired non-IgM antibody sequences representing 563 clonotypes, indicative of a highly polyclonal response.
View Article and Find Full Text PDFEliciting HIV-1-specific broadly neutralizing antibodies (bNAbs) remains a challenge for vaccine development, and the potential of passively delivered bNAbs for prophylaxis and therapeutics is being explored. We used neutralization data from four large virus panels to comprehensively map viral signatures associated with bNAb sensitivity, including amino acids, hypervariable region characteristics, and clade effects across four different classes of bNAbs. The bNAb signatures defined for the variable loop 2 (V2) epitope region of HIV-1 Env were then employed to inform immunogen design in a proof-of-concept exploration of signature-based epitope targeted (SET) vaccines.
View Article and Find Full Text PDFVaccine-elicited immunoglobulin G (IgG) has been shown to be important for protection against simian-human immunodeficiency virus (SHIV) infection in rhesus monkeys. However, it remains unclear whether vaccine-elicited IgA responses are beneficial or detrimental for protection. In this study, we evaluated the kinetics, magnitude, breadth, and linear epitope specificities of vaccine-elicited IgG and IgA responses in serum and mucosal secretions following intramuscular immunization with adenovirus 26 (Ad26) prime, Env protein boost vaccination regimens.
View Article and Find Full Text PDFAdenovirus (Ad) vectors are being investigated as vaccine candidates, but baseline antivector immunity exists in human populations to both human Ad (HuAd) and chimpanzee Ad (ChAd) vectors. In this study, we investigated the immunogenicity and cross-reactivity of a panel of recently described rhesus adenoviral (RhAd) vectors. RhAd vectors elicited T cells with low exhaustion markers and robust anamnestic potential.
View Article and Find Full Text PDFThe native-like, soluble SOSIP.664 trimer based on the BG505 clade A env gene of HIV-1 is immunogenic in various animal species, of which the most studied are rabbits and rhesus macaques. The trimer induces autologous neutralizing antibodies (NAbs) consistently but at a wide range of titers and with incompletely determined specificities.
View Article and Find Full Text PDFBroadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies. However, administration of purified bNAbs poses challenges in resource-poor settings, where the HIV-1 disease burden is greatest. vector-based production of bNAbs represents an alternative strategy.
View Article and Find Full Text PDFBackground: A safe, effective, and rapidly scalable vaccine against Zika virus infection is needed. We developed a purified formalin-inactivated Zika virus vaccine (ZPIV) candidate that showed protection in mice and non-human primates against viraemia after Zika virus challenge. Here we present the preliminary results in human beings.
View Article and Find Full Text PDFAdenovirus serotype 5 (Ad5) vaccine vectors elicit robust CD8 T cell responses, but these responses typically exhibit a partially exhausted phenotype. However, the immunologic mechanism by which Ad5 vectors induce dysfunctional CD8 T cells has not previously been elucidated. Here we demonstrate that, following immunization of B6 mice, Ad5 vectors elicit antigen-specific IL-10CD4 T cells with a distinct transcriptional profile in a dose-dependent fashion.
View Article and Find Full Text PDFAn important focus in vaccine research is the design of vaccine vectors with low seroprevalence and high immunogenicity. Replication-incompetent lymphocytic choriomeningitis virus (rLCMV) vectors do not elicit vector-neutralizing antibody responses, and homologous prime-boost regimens with rLCMV vectors induce boostable and protective T cell responses to model antigens in mice. However, cellular and humoral immune responses following homologous rLCMV vaccine regimens have not been rigorously evaluated in non-human primates (NHPs).
View Article and Find Full Text PDFZika virus (ZIKV) is responsible for a major ongoing epidemic in the Americas and has been causally associated with fetal microcephaly. The development of a safe and effective ZIKV vaccine is therefore an urgent global health priority. Here we demonstrate that three different vaccine platforms protect against ZIKV challenge in rhesus monkeys.
View Article and Find Full Text PDFThe examination of antibody responses in human immunodeficiency virus (HIV)-1-infected individuals in the setting of antiretroviral treatment (ART) interruption can provide insight into the evolution of antibody responses during viral rebound. In this study, we assessed antibody responses in 20 subjects in AIDS Clinical Trials Group A5187, wherein subjects were treated with antiretroviral therapy during acute/early HIV-1 infection, underwent analytic treatment interruption, and subsequently demonstrated viral rebound. Our data suggest that early initiation of ART arrests the maturation of HIV-1-specific antibody responses, preventing epitope diversification of antibody binding and the development of functional neutralizing capacity.
View Article and Find Full Text PDFZika virus (ZIKV) is a flavivirus that is responsible for the current epidemic in Brazil and the Americas. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans and mice. The rapid development of a safe and effective ZIKV vaccine is a global health priority, but very little is currently known about ZIKV immunology and mechanisms of immune protection.
View Article and Find Full Text PDFUnlabelled: We have recently demonstrated that CD4(+)T cell help is required at the time of adenovirus (Ad) vector immunization for the development of functional CD8(+)T cell responses, but the temporal requirement for CD4(+)T cell help for the induction of antibody responses remains unclear. Here we demonstrate that induction of antibody responses in C57BL/6 mice can occur at a time displaced from the time of Ad vector immunization by depletion of CD4(+)T cells. Transient depletion of CD4(+)T cells at the time of immunization delays the development of antigen-specific antibody responses but does not permanently impair their development or induce tolerance against the transgene.
View Article and Find Full Text PDFUnlabelled: The sequence diversity of human immunodeficiency virus type 1 (HIV-1) presents a formidable challenge to the generation of an HIV-1 vaccine. One strategy to address such sequence diversity and to improve the magnitude of neutralizing antibodies (NAbs) is to utilize multivalent mixtures of HIV-1 envelope (Env) immunogens. Here we report the generation and characterization of three novel, acute clade C HIV-1 Env gp140 trimers (459C, 405C, and 939C), each with unique antigenic properties.
View Article and Find Full Text PDFUnlabelled: Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide.
View Article and Find Full Text PDFUnlabelled: The extraordinary diversity of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein poses a major challenge for the development of an HIV-1 vaccine. One strategy to circumvent this problem utilizes bioinformatically optimized mosaic antigens. However, mosaic Env proteins expressed as trimers have not been previously evaluated for their stability, antigenicity, and immunogenicity.
View Article and Find Full Text PDFIn the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea.
View Article and Find Full Text PDF