An abnormal increase in glucocorticoid levels is responsible for pathological disorders affecting different organs and systems, and the selective inhibition of appropriate steroidogenic enzymes represents a validated strategy to restore their physiological levels. In continuing our studies on CYP11B inhibitors, in this paper a small series of 6-substituted 3-imidazolylmethylxanthones was designed and synthesized, according to the data acquired from previously reported series of derivatives and from a purposely-performed docking study. The new compounds proved to be potent inhibitors of CYP11B isoforms, being effective on CYP11B1 in the low nanomolar range and improving selectivity with respect to CYP11B2, compared to previously reported related compounds.
View Article and Find Full Text PDFAbnormally high corticosteroid levels are responsible for the onset of serious hormone-related diseases, and the inhibition of their biosynthesis by targeting cytochrome P450 (CYP) isoforms CYP11B1 and CYP11B2 has emerged as a promising strategy to restore healthy physiological levels of corticosteroids. With the aim of exploiting the xanthone scaffold as a privileged structure in medicinal chemistry and to further explore the chemical space of inhibitors of these CYPs, a small library of imidazolylmethylxanthones was designed based on the results of a previously described compound series. Assuming the capacity for an additional interaction with these enzymes, a properly selected substituent was introduced at position 6 of the xanthone core, maintaining the key imidazolylmethyl moiety at position 1.
View Article and Find Full Text PDFThe inhibition of corticosteroid biosynthesis could be considered as an emerging strategy to reduce their abnormally high levels, and in this framework CYP11B1 and CYP11B2 represent the most promising targets. In continuing our studies on flavonoid-like scaffolds as privileged structures in medicinal chemistry, in this paper we describe a small library of pyridyl- and imidazolylmethylchromones as potential inhibitors of these enzymes. Testing results proved that position 3 of the chromone scaffold is the most favorable for the introduction of the heme-coordinating heterocycles and, among them, the 4-imidazolyl moiety is the most convenient for the interaction with the heme iron of the selected cytochromes.
View Article and Find Full Text PDFLoop diuretics are used for fluid control in patients with heart failure. Furosemide and torasemide may exert differential effects on myocardial fibrosis. Here, we studied the effects of torasemide and furosemide on atrial fibrosis and remodeling during atrial fibrillation.
View Article and Find Full Text PDFAldosterone synthase (CYP11B2) catalyzes the conversion of 11-deoxycorticosterone to aldosterone via corticosterone and 18-hydroxycorticosterone. CYP11B2 is regarded as a new target for several cardiovascular diseases which are associated with chronically elevated aldosterone levels such as hypertension, congestive heart failure and myocardial fibrosis. In this paper, we optimized heterocycle substituted 3,4-dihydropyridin-2(1H)-ones as CYP11B inhibitors by systematic introduction of heteroatoms and by bioisosteric exchange of the lactame moiety by a sultame moiety.
View Article and Find Full Text PDF1-Phenylsulfinyl-3-(pyridin-3-yl)naphthalen-2-ols and related compounds were synthesized and evaluated for inhibition of aldosterone synthase (CYP11B2), a potential target for cardiovascular diseases associated with elevated plasma aldosterone levels like congestive heart failure and myocardial fibrosis. Introduction of substituents at the phenylsulfinyl moiety and changes of the substitution pattern at the naphthalene core were examined. Potent compounds were further examined for selectivity versus other important steroidogenic CYP enzymes, i.
View Article and Find Full Text PDFPqsD mediates the conversion of anthraniloyl-coenzyme A (ACoA) to 2-heptyl-4-hydroxyquinoline (HHQ), a precursor of the Pseudomonas quinolone signal (PQS) molecule. Due to the role of the quinolone signaling pathway of Pseudomonas aeruginosa in the expression of several virulence factors and biofilm formation, PqsD is a potential target for controlling this nosocomial pathogen, which exhibits a low susceptibility to standard antibiotics. PqsD belongs to the β-ketoacyl-ACP synthase family and is similar in structure to homologous FabH enzymes in E.
View Article and Find Full Text PDFImidazolylmethylflavones previously reported by us as aromatase inhibitors proved to be able to interact with aldosterone synthase (CYP11B2), a cytochrome P450 enzyme involved in the biosynthesis of the mineralcorticoid hormone aldosterone, and were used to obtain a pharmacophore model for this enzyme. Here, in the search for potential ligands for CYP11B2 and the related CYP11B1, a virtual screening of a small compounds library of our earlier synthesized aromatase inhibitors was performed and, according to the results and the corresponding biological data, led to the design and synthesis of a series of xanthones derivatives carrying an imidazolylmethyl substituent in position 1 and different substituents in position 4. Some very potent inhibitors were obtained; in particular, the 4-chlorine derivative was active in the low nanomolar or subnanomolar range on CYP11B2 and CYP11B1, respectively, proving that xanthone can be considered as an excellent scaffold, whose activity can be directed to different targets when appropriately functionalized.
View Article and Find Full Text PDFA new series of 16E-arylidene androstene derivatives has been synthesized and evaluated for aromatase inhibitory activity. The impact of various aryl substituents at 16 position of the steroid skeleton on aromatase inhibitory activity has been observed. The 16E-arylidenosteroids 6, 10 and 11 exhibited significant inhibition of the aromatase enzyme.
View Article and Find Full Text PDF2-Heptyl-4-hydroxyquinoline (HHQ) and Pseudomonas quinolone signal (PQS) are involved in the regulation of virulence factor production and biofilm formation in Pseudomonas aeruginosa. PqsD is a key enzyme in the biosynthesis of these signal molecules. Using a ligand-based approach, we have identified the first class of PqsD inhibitors.
View Article and Find Full Text PDFEstrogens, responsible for the growth of hormone-dependant breast cancer are biosynthesized from androgens involving aromatase enzyme in the last rate limiting step. Inhibition of aromatase is an efficient approach for the prevention and treatment of breast cancer. Novel 4-phenylthia derivatives (2, 3 and 7) have been synthesized as aromatase inhibitors.
View Article and Find Full Text PDFThe pqs quorum sensing communication system of Pseudomonas aeruginosa controls virulence factor production and is involved in biofilm formation, therefore playing an important role for pathogenicity. In order to attenuate P. aeruginosa pathogenicity, we followed a ligand-based drug design approach and synthesized a series of compounds targeting PqsR, the receptor of the pqs system.
View Article and Find Full Text PDFAs a part of our investigations into the structural-activity relationship studies of a novel class of medicinally active 16-substituted steroids, several new 16-imidazolyl substituted steroidal derivatives have been synthesized and pharmacologically evaluated in the current study. The new steroidal analogues 5, 6, 8, 9, 11 and 12 exhibited moderate cytotoxic effects in sixty cancer cell lines derived from nine cancers types. The imidazolyl substituted steroidal derivatives 6 (DPJ-RG-1241) and 7 (RB-401) were obtained as the powerful inhibitors of aromatase with IC50=0.
View Article and Find Full Text PDFCYP11B1 is the key enzyme in cortisol biosynthesis, and its inhibition with selective compounds is a promising strategy for the treatment of diseases associated with elevated cortisol levels, such as Cushing's syndrome or metabolic disease. Expanding on a previous study from our group resulting in the first potent and rather selective inhibitor described so far (1, IC50 = 152 nM), we herein describe further optimizations of the imidazolylmethyl pyridine core. Five compounds among the 42 substances synthesized showed IC50 values below 50 nM.
View Article and Find Full Text PDFPyridine substituted 3,4-dihydro-1H-quinolin-2-ones (e.g., 1-3) constitute a class of highly potent and selective inhibitors of aldosterone synthase (CYP11B2), a promising target for the treatment of hyperaldosteronism, congestive heart failure, and myocardial fibrosis.
View Article and Find Full Text PDFTaking into consideration the structural requirements for cytotoxicity and aromatase inhibition, several new 16E-arylidenosteroidal derivatives have been prepared and evaluated for their cytotoxic and aromatase inhibitory activity. The new steroidal analogues 3, 5-8 and 11 exhibited significant cytotoxic effects when screened against three cancer cell lines, MCF-7 (breast), NCl-H460 (lung) and SF-268 central nervous system (CNS) at 100 µM and sensible cytotoxic effects subsequently in sixty cancer cell lines derived from nine cancers types (leukemia, lung, colon, CNS, melanoma, ovarian, renal, prostate and breast cancers). The imidazolyl substituted steroidal derivatives 5 and 7 exhibited strong inhibition of the aromatase enzyme with 16-[4-{3-(imidazol-1-yl)propoxy}-3-methoxybenzylidene]-5-androstene-3β,17β-diol (7) displaying 13 times more potency in comparison to aminoglutethimide.
View Article and Find Full Text PDFThe design, synthesis, and biological evaluation of a series of new aromatase (AR, CYP19) inhibitors bearing an imidazole ring linked to a 7-substituted coumarin scaffold at position 4 (or 3) are reported. Many compounds exhibited an aromatase inhibitory potency in the nanomolar range along with a high selectivity over 17-α-hydroxylase/C17-20 lyase (CYP17). The most potent AR inhibitor was the 7-(3,4-difluorophenoxy)-4-imidazolylmethyl coumarin 24 endowed with an IC(50) = 47 nM.
View Article and Find Full Text PDFOutgoing from an etomidate-based design concept, we succeeded in the development of a series of highly active and selective inhibitors of CYP11B1, the key enzyme of cortisol biosynthesis, as potential drugs for the treatment of Cushing's syndrome and related diseases. Thus, compound 33 (IC50 = 152 nM) is the first CYP11B1 inhibitor showing a rather good selectivity toward the most important steroidogenic CYP enzymes aldosterone synthase (CYP11B2), the androgen-forming CYP17, and aromatase (estrogen synthase, CYP19).
View Article and Find Full Text PDFNovel pyrazole and isoxazole derivatives (6-9) were synthesized as a aromatase inhibitors. Pyrazole was synthesized from hydrazine hydrate and isoxazoles from hydroxylamine hydrochloride under different conditions. Molecular docking studies were carried out for the synthesized compounds.
View Article and Find Full Text PDFA series of 23 N-(Pyridin-3-yl)benzamides was synthesized and evaluated for their potential to inhibit human steroid-11β-hydroxylase (CYP11B1) and human aldosterone synthase (CYP11B2). The most potent and selective CYP11B2 inhibitors (IC(50) values 53-166 nM) were further evaluated for their potential to inhibit human CYP17 and CYP19, and no inhibition was observed. Clear evidence was shown for N-(Pyridin-3-yl)benzamides to be a highly selective class of CYP11B2 inhibitors in vitro.
View Article and Find Full Text PDFIn further pursuing our search for potent and selective aromatase inhibitors, a new series of molecules was designed and synthesized, exploring possible structural modifications of a previously identified xanthone scaffold. Among them, highly potent compounds, with inhibitory activity in the low nanomolar range, were found. In particular, substitution of the heterocyclic oxygen atom in the xanthone core by a sulfur atom and/or increase in structure flexibility seemed to be favorable for the interaction with the enzyme.
View Article and Find Full Text PDF