Class Ia ribonucleotide reductases (RNRs) are allosterically regulated by ATP and dATP to maintain the appropriate deoxyribonucleotide levels inside the cell for DNA biosynthesis and repair. RNR activity requires precise positioning of the β and α subunits for the transfer of a catalytically essential radical species. Excess dATP inhibits RNR through the creation of an α-β interface that restricts the ability of β to obtain a position that is capable of radical transfer.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
August 2024
Preparation of biomacromolecules for structural biology studies is a complex and time-consuming process. The goal is to produce a highly concentrated, highly pure product that is often shipped to large facilities with tools to prepare the samples for crystallization trials or for measurements at synchrotrons and cryoEM centers. The aim of this article is to provide guidance and to discuss general considerations for shipping biomacromolecular samples.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
June 2024
Acta Crystallogr F Struct Biol Commun
April 2024
High-resolution structures of biomolecules can be obtained using single-particle cryo-electron microscopy (SPA cryo-EM), and the rapidly growing number of structures solved by this method is encouraging more researchers to utilize this technique. As with other structural biology methods, sample preparation for an SPA cryo-EM data collection requires some expertise and an understanding of the strengths and limitations of the technique in order to make sensible decisions in the sample-preparation process. In this article, common strategies and pitfalls are described and practical advice is given to increase the chances of success when starting an SPA cryo-EM project.
View Article and Find Full Text PDFCryo-electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.
View Article and Find Full Text PDFCryogenic electron microscopy (cryoEM) uses images of frozen hydrated biological specimens to produce macromolecular structures, opening up previously inaccessible levels of biological organization to high-resolution structural analysis. CryoEM has the potential for broad impact in biomedical research, including basic cell, molecular, and structural biology, and increasingly in drug discovery and vaccine development. Recent advances have led to the expansion of molecular and cellular structure determination at an exponential rate.
View Article and Find Full Text PDFCation-chloride cotransporters (CCCs) regulate the movement of chloride across membranes, controlling physiological processes from cell volume maintenance to neuronal signaling. Human CCCs are clinical targets for existing diuretics and potentially additional indications. Here, we report the X-ray crystal structure of the soluble C-terminal regulatory domain of a eukaryotic potassium-chloride cotransporter, Caenorhabditis elegans KCC-1.
View Article and Find Full Text PDFExonic DNA sequence variants in the gene associate with both sporadic and familial amyotrophic lateral sclerosis (ALS). Here, we examine functional defects in 25 missense TBK1 mutations, focusing on kinase activity and protein-protein interactions. We identified kinase domain (KD) mutations that abolish kinase activity or display substrate-specific defects in specific pathways, such as innate immunity and autophagy.
View Article and Find Full Text PDFNatural resistance-associated macrophage protein (Nramp) transporters enable uptake of essential transition metal micronutrients in numerous biological contexts. These proteins are believed to function as secondary transporters that harness the electrochemical energy of proton gradients by "coupling" proton and metal transport. Here we use the (Dra) Nramp homologue, for which we have determined crystal structures in multiple conformations, to investigate mechanistic details of metal and proton transport.
View Article and Find Full Text PDFNramp family transporters-expressed in organisms from bacteria to humans-enable uptake of essential divalent transition metals via an alternating-access mechanism that also involves proton transport. We present high-resolution structures of (Dra)Nramp in multiple conformations to provide a thorough description of the Nramp transport cycle by identifying the key intramolecular rearrangements and changes to the metal coordination sphere. Strikingly, while metal transport requires cycling from outward- to inward-open states, efficient proton transport still occurs in outward-locked (but not inward-locked) DraNramp.
View Article and Find Full Text PDFPP2C phosphatases control biological processes including stress responses, development, and cell division in all kingdoms of life. Diverse regulatory domains adapt PP2C phosphatases to specific functions, but how these domains control phosphatase activity was unknown. We present structures representing active and inactive states of the PP2C phosphatase SpoIIE from .
View Article and Find Full Text PDFRibonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively.
View Article and Find Full Text PDFRibonucleotide reductases (RNRs) provide the precursors for DNA biosynthesis and repair and are successful targets for anticancer drugs such as clofarabine and gemcitabine. Recently, we reported that dATP inhibits E. coli class Ia RNR by driving formation of RNR subunits into α4β4 rings.
View Article and Find Full Text PDFRNRs (ribonucleotide reductases) are key players in nucleic acid metabolism, converting ribonucleotides into deoxyribonucleotides. As such, they maintain the intracellular balance of deoxyribonucleotides to ensure the fidelity of DNA replication and repair. The best-studied RNR is the class Ia enzyme from Escherichia coli, which employs two subunits to catalyse its radical-based reaction: β2 houses the diferric-tyrosyl radical cofactor, and α2 contains the active site.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2011
Essential for DNA biosynthesis and repair, ribonucleotide reductases (RNRs) convert ribonucleotides to deoxyribonucleotides via radical-based chemistry. Although long known that allosteric regulation of RNR activity is vital for cell health, the molecular basis of this regulation has been enigmatic, largely due to a lack of structural information about how the catalytic subunit (α(2)) and the radical-generation subunit (β(2)) interact. Here we present the first structure of a complex between α(2) and β(2) subunits for the prototypic RNR from Escherichia coli.
View Article and Find Full Text PDF