Publications by authors named "Christina Towers"

Article Synopsis
  • Mitochondrial DNA (mtDNA) plays a crucial role in energy production and acts as a damage-associated molecular pattern (DAMP), which triggers immune responses and contributes to inflammation during various diseases.
  • When cells experience mtDNA stress, such as during herpes simplex virus-1 infection, changes occur in mitochondrial structure and function, leading to the release of mtDNA into the cytoplasm and activation of the cGAS-STING immune pathway.
  • The study suggests that mtDNA undergoing replication stress is selectively removed through a quality control mechanism involving endosomes, and this process could be a potential target for therapies aimed at reducing mtDNA-related inflammation during infections.
View Article and Find Full Text PDF

Pharmacologic inhibition of autophagy can be achieved using lysosomotropic agents such as hydroxychloroquine (HCQ) that interfere with fusion of the autophagosome to the lysosome thus preventing completion of the recycling process. The goal of the present study is to determine the sensitivity of eight canine (cOSA) and four human (hOSA) osteosarcoma tumour cell lines to antiproliferative and cytotoxic effects of lysosomal autophagy inhibitors, and to compare these results to the autophagy-dependence measured using a CRISPR/Cas9 live-cell imaging assay in OSA and other tumour cell lines. Antiproliferative and cytotoxic response to HCQ and Lys05 was determined using live cell imaging and YOYO-1 staining.

View Article and Find Full Text PDF

Autophagy plays a complex role in several cancer types, including endocrine-dependent cancers, by fueling cellular metabolism and clearing damaged substrates. This conserved recycling process has a dual function across tumor types where it can be tumor suppressive at early stages but tumor promotional in established disease. This review highlights the controversial roles of autophagy in endocrine-dependent tumors regarding cancer initiation, tumorigenesis, metastasis, and treatment response.

View Article and Find Full Text PDF

SQSTM1/p62 is an autophagic receptor that plays a major role in mediating stress and innate immune responses. Preclinical studies identified p62 as a target of the prototype innate defense regulator (IDR); however, the molecular mechanism of this process remains unclear. Here, we describe the structural basis and biological consequences of the interaction of p62 with the next generation of IDRs, dusquetide.

View Article and Find Full Text PDF

Autophagy is a central recycling process, and it plays a complex role in cancer. We discovered that when autophagy is blocked, cancer cells compensate by increasing mitochondrial-derived vesicles. However, there are many unanswered questions remaining, particularly in the context of the dual roles of autophagy in cancer.

View Article and Find Full Text PDF

Mitochondria are critical organelles that maintain cellular metabolism and overall function. The catabolic pathway of autophagy plays a central role in recycling damaged mitochondria. Although the autophagy pathway is indispensable for some cancer cell survival, our latest study shows that rare autophagy-dependent cancer cells can adapt to loss of this core pathway.

View Article and Find Full Text PDF

The Autophagy, Inflammation and Metabolism (AIM) Center organized a globally accessible, virtual eSymposium during the COVID-19 pandemic in 2020. The conference included presentations from scientific leaders, as well as a career discussion panel, and provided a much-needed platform for early-career investigators (ECIs) to showcase their research in autophagy. This Perspective summarizes the science presented by the ECIs during the event and discusses the lessons learned from a virtual meeting of this kind during the pandemic.

View Article and Find Full Text PDF

Mitochondria are critical metabolic and signaling hubs, and dysregulated mitochondrial homeostasis is implicated in many diseases. Degradation of damaged mitochondria by selective GABARAP/LC3-dependent macro-autophagy (mitophagy) is critical for maintaining mitochondrial homeostasis. To identify alternate forms of mitochondrial quality control that functionally compensate if mitophagy is inactive, we selected for autophagy-dependent cancer cells that survived loss of LC3-dependent autophagosome formation caused by inactivation of ATG7 or RB1CC1/FIP200.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Invasive lobular carcinoma of the breast (ILC) is strongly estrogen-driven and represents a unique context for estrogen receptor (ER) signaling. In ILC, ER controls the expression of the Wnt ligand WNT4, which is critical for endocrine response and anti-estrogen resistance. However, signaling mediated by WNT4 is cell type- and tissue-specific, and has not been explored in ILC.

View Article and Find Full Text PDF

Unlabelled: Macroautophagy/autophagy degrades proteins and organelles to generate macromolecular building blocks. As such, some cancer cells are particularly dependent on autophagy. In a previous paper, we found that even highly autophagy-dependent cancer cells can adapt to circumvent autophagy inhibition.

View Article and Find Full Text PDF

Autophagy is intricately linked with many intracellular signaling pathways, particularly nutrient-sensing mechanisms and cell death signaling cascades. In cancer, the roles of autophagy are context dependent. Tumor cell-intrinsic effects of autophagy can be both tumor suppressive and tumor promotional.

View Article and Find Full Text PDF

Autophagy is cellular recycling process that plays a complex role in cancer. Pre-clinical studies indicating a pro-tumorigenic role of autophagy have led to the launch of dozens of clinical trials combining autophagy inhibition with other standard of care therapies in different tumor types. A recent publication utilized a novel, acute, CRISPR/Cas9 assay to identify cancer cell lines that are exquisitely sensitive to loss of core autophagy genes within the first 7 days.

View Article and Find Full Text PDF

While autophagy is thought to be an essential process in some cancer cells, it is unknown if or how such cancer cells can circumvent autophagy inhibition. To address this, we developed a CRISPR/Cas9 assay with dynamic live-cell imaging to measure acute effects of knockout (KO) of autophagy genes compared to known essential and non-essential genes. In some cancer cells, autophagy is as essential for cancer cell growth as mRNA transcription or translation or DNA replication.

View Article and Find Full Text PDF

SQSTM1/p62 facilitates responses to various cellular stresses and has been implicated in human diseases. This protein functions as a major cytoplasmic signaling hub and has multiple binding partners, including arginylated (Nt-R) proteins that are recognized by the ZZ domain of SQSTM1/p62 (SQSTM1/p62). We have determined the molecular mechanism of Nt-R recognition using a combination of biochemical and NMR approaches and obtained the crystal structure of SQSTM1/p62 in complex with Nt-R.

View Article and Find Full Text PDF

Autophagic receptor p62 is a critical mediator of cell detoxification, stress response, and metabolic programs and is commonly deregulated in human diseases. The diverse functions of p62 arise from its ability to interact with a large set of ligands, such as arginylated (Nt-R) substrates. Here, we describe the structural mechanism for selective recognition of Nt-R by the ZZ domain of p62 (p62).

View Article and Find Full Text PDF

Macroautophagy (autophagy) is intimately linked with cell death and allows cells to evade apoptosis. This has prompted clinical trials to combine autophagy inhibitors with other drugs with the aim of increasing the likelihood of cancer cells dying. However, the molecular basis for such effects is unknown.

View Article and Find Full Text PDF

Lysosomes are the recycling centers of the cell where organelles and proteins are degraded during autophagy and macropinocytosis; they also serve as signaling hubs that control the activity of mTORC1. In this issue, Rebecca and colleagues report the development of a new type of lysosomal inhibitor for cancer therapy that can inhibit multiple lysosomal activities that are needed for tumor cell survival and growth. .

View Article and Find Full Text PDF

Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial.

View Article and Find Full Text PDF

TRAIL is a potent death-inducing ligand that mediates apoptosis through the extrinsic pathway and serves as an important endogenous tumor suppressor mechanism. Because tumor cells are often killed by TRAIL and normal cells are not, drugs that activate the TRAIL pathway have been thought to have potential clinical value. However, to date, most TRAIL-related clinical trials have largely failed due to the tumor cells having intrinsic or acquired resistance to TRAIL-induced apoptosis.

View Article and Find Full Text PDF

Autophagy is a catabolic process that facilitates nutrient recycling via degradation of damaged organelles and proteins through lysosomal mediated degradation. Alterations in this complex, and tightly regulated process, lead to disease. Autophagy is widely accepted as cytoprotective against neurodegenerative diseases and a variety of clinical interventions are moving forward to increase autophagy as a therapeutic intervention.

View Article and Find Full Text PDF