Oncogenic types of human papillomaviruses (HPVs) cause cervical cancer and other malignancies in humans. The HPV E6 oncoprotein is considered to be an attractive therapeutic target since its inhibition can lead to the apoptotic cell death of HPV-positive cancer cells. The HPV type 16 (HPV16) E6-binding peptide pep11, and variants thereof, induce cell death specifically in HPV16-positive cancer cells.
View Article and Find Full Text PDFThe HPV E6 oncoprotein maintains the malignant phenotype of HPV-positive cancer cells and represents an attractive therapeutic target. E6 forms a complex with the cellular E6AP ubiquitin ligase, ultimately leading to p53 degradation. The recently elucidated x-ray structure of a HPV16 E6/E6AP complex showed that HPV16 E6 forms a distinct binding pocket for E6AP.
View Article and Find Full Text PDFPurpose: To analyze the prognostic relevance and relative impact of circulating myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) compared with functional tumor antigen-specific T cells in patients with melanoma with distant metastasis.
Experimental Design: The percentage of CD14(+)CD11b(+)HLA-DR(-/low) MDSCs, CD4(+)CD25(+)FoxP3(+) Tregs, and the presence of NY-ESO-1- or Melan-A-specific T cells was analyzed in 94 patients and validated in an additional cohort of 39 patients by flow cytometry. Univariate survival differences were calculated according to Kaplan-Meier and log-rank tests.
We describe a novel method to measure rotational diffusion of large biomolecules in solution based on fluorescence correlation on the nanosecond time scale. In contrast to conventional fluorescence anisotropy measurements, a correlation-based method will also work if the rotational diffusion time is much longer than the fluorescence decay time. Thus, the method is suited to study the rotational diffusion of macromolecules having rotational diffusion times of dozens to hundreds of nanoseconds, which is considerably larger than the fluorescence lifetime of most commercially available dyes or auto-fluorescent proteins.
View Article and Find Full Text PDF