We developed an upcycling process of polyurethane obtaining porous nitrogen-doped carbon materials that were applied in supercapacitor electrodes. In detail, a mechanochemical solvent-free one-pot synthesis is used and combined with a thermal treatment. Polyurethane is an ideal precursor already containing nitrogen in its backbone, yielding nitrogen-doped porous carbon materials with N content values of 1-8 wt %, high specific surface area values of up to 2150 m·g (at a N content of 1.
View Article and Find Full Text PDFNitrogen-doped carbons were synthesized by a solvent-free mechanochemically induced one-pot synthesis by using renewable biomass waste. Three solid materials are used: sawdust as a carbon source, urea and/or melamine as a nitrogen source, and potassium carbonate as an activation agent. The resulting nitrogen-doped porous carbons offer a very high specific surface area of up to 3000 m g and a large pore volume up to 2 cm g .
View Article and Find Full Text PDFNitrogen-doped nanoporous carbons were synthesized by a solvent-free mechanochemically induced one-pot synthesis. This facile approach involves the mechanochemical treatment and carbonization of three solid materials: potassium carbonate, urea, and lignin, which is a waste product from pulp industry. The resulting nitrogen-doped porous carbons offer a very high specific surface area up to 3000 m g and large pore volume up to 2 cm g .
View Article and Find Full Text PDF