Background: Cyclic di-guanylate (c-di-GMP), synthesized by diguanylate cyclase, is a major second messenger in prokaryotes, where it triggers biofilm formation. The dictyostelid social amoebas acquired diguanylate cyclase (dgcA) by horizontal gene transfer. Dictyostelium discoideum (Ddis) in taxon group 4 uses c-di-GMP as a secreted signal to induce differentiation of stalk cells, the ancestral somatic cell type that supports the propagating spores.
View Article and Find Full Text PDFProtein kinases are major regulators of cellular processes, but the roles of most kinases remain unresolved. Dictyostelid social amoebas have been useful in identifying functions for 30% of its kinases in cell migration, cytokinesis, vesicle trafficking, gene regulation and other processes but their upstream regulators and downstream effectors are mostly unknown. Comparative genomics can assist to distinguish between genes involved in deeply conserved core processes and those involved in species-specific innovations, while co-expression of genes as evident from comparative transcriptomics can provide cues to the protein complement of regulatory networks.
View Article and Find Full Text PDFGTP binding proteins known as small GTPases make up one of the largest groups of regulatory proteins and control almost all functions of living cells. Their activity is under, respectively, positive and negative regulation by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which together with their upstream regulators and the downstream targets of the small GTPases form formidable signalling networks. While genomics has revealed the large size of the GTPase, GEF and GAP repertoires, only a small fraction of their interactions and functions have yet been experimentally explored.
View Article and Find Full Text PDFUnicellular protozoa that encyst individually upon starvation evolved at least eight times into organisms that instead form multicellular fruiting bodies with spores. The Dictyostelia are the largest and most complex group of such organisms. They can be subdivided into 4 major groups, with many species in groups 1-3 having additionally retained encystment.
View Article and Find Full Text PDFThe well-orchestrated multicellular life cycle of Dictyostelium discoideum has fascinated biologists for over a century. Self-organisation of its amoebas into aggregates, migrating slugs and fruiting structures by pulsatile cAMP signalling and their ability to follow separate differentiation pathways in well-regulated proportions continue to be topics under investigation. A striking aspect of D.
View Article and Find Full Text PDFBackground: Dictyostelid social amoebas self-organize into fruiting bodies, consisting of spores and up to four supporting cell types in the phenotypically most complex taxon group 4. High quality genomes and stage- and cell-type specific transcriptomes are available for representative species of each of the four taxon groups. To understand how evolution of gene regulation in Dictyostelia contributed to evolution of phenotypic complexity, we analysed conservation and change in abundance, functional domain architecture and developmental regulation of their transcription factors (TFs).
View Article and Find Full Text PDFThe Dictyostelid social amoebas are a popular model system for cell- and developmental biology and for evolution of sociality. Small subunit (SSU) ribosomal DNA-based phylogenies subdivide the known 150 species into four major and some minor groups, but lack resolution within groups, particularly group 4, and, as shown by genome-based phylogenies of 11 species, showed errors in the position of the root and nodes separating major clades. We are interested in the evolution of cell-type specialization, which particularly expanded in group 4.
View Article and Find Full Text PDFMicrobiology (Reading)
May 2018
Not long ago, protists were considered one of four eukaryote kingdoms, but recent gene-based phylogenies show that they contribute to all nine eukaryote subdomains. The former kingdoms of animals, plants and fungi are now relegated to lower ranks within subdomains. Most unicellular protists respond to adverse conditions by differentiating into dormant walled cysts.
View Article and Find Full Text PDFBackground: Annotation of gene models and transcripts is a fundamental step in genome sequencing projects. Often this is performed with automated prediction pipelines, which can miss complex and atypical genes or transcripts. RNA sequencing (RNA-seq) data can aid the annotation with empirical data.
View Article and Find Full Text PDFCoordination of cell movement with cell differentiation is a major feat of embryonic development. The Dictyostelium stalk always forms at the organizing tip, by a mechanism that is not understood. We previously reported that cyclic diguanylate (c-di-GMP), synthesized by diguanylate cyclase A (DgcA), induces stalk formation.
View Article and Find Full Text PDFBackground: Dictyostelia are a well-studied group of organisms with colonial multicellularity, which are members of the mostly unicellular Amoebozoa. A phylogeny based on SSU rDNA data subdivided all Dictyostelia into four major groups, but left the position of the root and of six group-intermediate taxa unresolved. Recent phylogenies inferred from 30 or 213 proteins from sequenced genomes, positioned the root between two branches, each containing two major groups, but lacked data to position the group-intermediate taxa.
View Article and Find Full Text PDFBackground: The developmental cycle of Dictyostelid amoebae represents an early form of multicellularity with cell type differentiation. Mutant studies in the model Dictyostelium discoideum revealed that its developmental program integrates the actions of genes involved in signal transduction, adhesion, motility, autophagy and cell wall and matrix biosynthesis. However, due to functional redundancy and fail safe options not required in the laboratory, this single organism approach cannot capture all essential genes.
View Article and Find Full Text PDFAggregative multicellularity, resulting in formation of a spore-bearing fruiting body, evolved at least six times independently amongst both eukaryotes and prokaryotes. Amongst eukaryotes, this form of multicellularity is mainly studied in the social amoeba Dictyostelium discoideum. In this review, we summarise trends in the evolution of cell-type specialisation and behavioural complexity in the four major groups of Dictyostelia.
View Article and Find Full Text PDFThe evolution of multicellularity required novel mechanisms for intercellular communication, but their origin is unclear. Dictyostelium cells exchange signals to position specialized cell types in multicellular spore-bearing structures. These signals activate complex pathways that converge on activation of cAMP-dependent protein kinase (PKA).
View Article and Find Full Text PDFMutations in either of two presenilin genes can cause familial Alzheimer's disease. Presenilins have both proteolysis-dependent functions, as components of the γ-secretase complex, and proteolysis-independent functions in signalling. In this study, we investigate a conserved function of human presenilins in the development of the simple model organism Dictyostelium discoideum.
View Article and Find Full Text PDFBackground: Multicellularity provides organisms with opportunities for cell-type specialization, but requires novel mechanisms to position correct proportions of different cell types throughout the organism. Dictyostelid social amoebas display an early form of multicellularity, where amoebas aggregate to form fruiting bodies, which contain only spores or up to four additional cell-types. These cell types will form the stalk and support structures for the stalk and spore head.
View Article and Find Full Text PDFColony formation was the first step towards evolution of multicellularity in many macroscopic organisms. Dictyostelid social amoebas have used this strategy for over 600 Myr to form fruiting structures of increasing complexity. To understand in which order multicellular complexity evolved, we measured 24 phenotypic characters over 99 dictyostelid species.
View Article and Find Full Text PDFThe model organism Dictyostelium discoideum is a member of the Amoebozoa, one of the six major -divisions of eukaryotes. Amoebozoa comprise a wide variety of amoeboid and flagellate organisms with single cells measuring from 5 μm to several meters across. They have adopted many different life styles and sexual behaviors and can live in all but the most extreme environments.
View Article and Find Full Text PDFBackground: The Amoebozoa constitute one of the primary divisions of eukaryotes, encompassing taxa of both biomedical and evolutionary importance, yet its genomic diversity remains largely unsampled. Here we present an analysis of a whole genome assembly of Acanthamoeba castellanii (Ac) the first representative from a solitary free-living amoebozoan.
Results: Ac encodes 15,455 compact intron-rich genes, a significant number of which are predicted to have arisen through inter-kingdom lateral gene transfer (LGT).
Penicillin-binding protein 5 (PBP5), a product of the Escherichia coli gene dacA, possesses some β-lactamase activity. On binding to penicillin or related antibiotics via an ester bond, it deacylates and destroys them functionally by opening the β-lactam ring. This process takes several minutes.
View Article and Find Full Text PDFDictyostelium discoideum (DD), an extensively studied model organism for cell and developmental biology, belongs to the most derived group 4 of social amoebas, a clade of altruistic multicellular organisms. To understand genome evolution over long time periods and the genetic basis of social evolution, we sequenced the genomes of Dictyostelium fasciculatum (DF) and Polysphondylium pallidum (PP), which represent the early diverging groups 1 and 2, respectively. In contrast to DD, PP and DF have conventional telomere organization and strongly reduced numbers of transposable elements.
View Article and Find Full Text PDFCyclic AMP acting on protein kinase A controls sporulation and encystation in social and solitary amoebas. In Dictyostelium discoideum, adenylate cyclase R (ACR), is essential for spore encapsulation. In addition to its cyclase (AC) domain, ACR harbors seven transmembrane helices, a histidine kinase domain, and two receiver domains.
View Article and Find Full Text PDFWe have identified new synaptobrevin-like SNAREs and localized the corresponding gene products with green fluorescent protein (GFP)-fusion constructs and specific antibodies at the light and electron microscope (EM) levels. These SNAREs, named Paramecium tetraurelia synaptobrevins 8 to 12 (PtSyb8 to PtSyb12), showed mostly very restricted, specific localization, as they were found predominantly on structures involved in endo- or phagocytosis. In summary, we found PtSyb8 and PtSyb9 associated with the nascent food vacuole, PtSyb10 near the cell surface, at the cytostome, and in close association with ciliary basal bodies, and PtSyb11 on early endosomes and on one side of the cytostome, while PtSyb12 was found in the cytosol.
View Article and Find Full Text PDF