Publications by authors named "Christina Scherer"

Since its detection in 2015 in Brazil, Zika virus (ZIKV) has remained in the spotlight of international public health and research as an emerging arboviral pathogen. In addition to single infection, ZIKV may occur in co-infection with dengue (DENV) and chikungunya (CHIKV) viruses, with whom ZIKV shares geographic distribution and the mosquito Aedes aegypti as a vector. The main mosquito immune response against arboviruses is RNA interference (RNAi).

View Article and Find Full Text PDF
Article Synopsis
  • Arboviruses transmitted by mosquitoes contribute to millions of deaths annually, while recent discoveries have identified many insect-specific viruses (ISVs) in these mosquitoes that cannot infect vertebrates.
  • This study focused on Agua Salud alphavirus (ASALV), an insect-specific alphavirus, and its interaction with the mosquito's RNA interference (RNAi) antiviral response, revealing that the knockdown of certain RNAi proteins enhances ASALV replication.
  • The findings suggest that ASALV's interaction with the RNAi mechanism in mosquitoes has distinct differences from other arthropod-borne alphaviruses, indicating a need for further research on ISVs and their antiviral strategies.
View Article and Find Full Text PDF

Mosquitoes are known as important vectors of many arthropod-borne (arbo)viruses causing disease in humans. These include dengue (DENV) and Zika (ZIKV) viruses. The exogenous small interfering (si)RNA (exo-siRNA) pathway is believed to be the main antiviral defense in arthropods, including mosquitoes.

View Article and Find Full Text PDF

is a protozoan parasite and a leading cause of diarrheal disease and mortality in young children. Currently, there are no fully effective treatments available to cure infection with this diarrheal pathogen. In this study, we report a broad drug repositioning effort that led to the identification of bicyclic azetidines as a new anticryptosporidial series.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) life cycle is tightly linked to the host cell lipid metabolism with the endoplasmic reticulum-derived membranous web harboring viral RNA replication complexes and lipid droplets as virion assembly sites. To investigate HCV-induced changes in the lipid composition, we performed quantitative shotgun lipidomic studies of whole cell extracts and subcellular compartments. Our results indicate that HCV infection reduces the ratio of neutral to membrane lipids.

View Article and Find Full Text PDF

Dihydroorotate dehydrogenase (DHODH) is an enzyme necessary for pyrimidine biosynthesis in protozoan parasites of the genus , the causative agents of malaria. We recently reported the identification of novel compounds derived from diversity-oriented synthesis with activity in multiple stages of the malaria parasite life cycle. Here, we report the optimization of a potent series of antimalarial inhibitors consisting of azetidine-2-carbonitriles, which we had previously shown to target DHODH in a biochemical assay.

View Article and Find Full Text PDF

In 2013, the Centers for Disease Control highlighted Clostridium difficile as an urgent threat for antibiotic-resistant infections, in part due to the emergence of highly virulent fluoroquinolone-resistant strains. Limited therapeutic options currently exist, many of which result in disease relapse. We sought to identify molecules specifically targeting C.

View Article and Find Full Text PDF

Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase.

View Article and Find Full Text PDF

In order to identify the most attractive starting points for drugs that can be used to prevent malaria, a diverse chemical space comprising tens of thousands to millions of small molecules may need to be examined. Achieving this throughput necessitates the development of efficient ultra-high-throughput screening methods. Here, we report the development and evaluation of a luciferase-based phenotypic screen of malaria exoerythrocytic-stage parasites optimized for a 1536-well format.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) infections affect millions of children and adults every year. Despite the significant disease burden, there are currently no safe and effective vaccines or therapeutics. We employed a replicon-based high throughput screen combined with live-virus triaging assays to identify three novel diversity-oriented synthesis-derived scaffolds with activity against RSV.

View Article and Find Full Text PDF

Preventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity.

View Article and Find Full Text PDF

Visceral leishmaniasis is an important parasitic disease of the developing world with a limited arsenal of drugs available for treatment. The existing drugs have significant deficiencies so there is an urgent need for new and improved drugs. In the human host, Leishmania are obligate intracellular parasites which poses particular challenges in terms of drug discovery.

View Article and Find Full Text PDF

Background: The emergence and spread of drug resistance to current antimalarial therapies remains a pressing concern, escalating the need for compounds that demonstrate novel modes of action. Diversity-Oriented Synthesis (DOS) libraries bridge the gap between conventional small molecule and natural product libraries, allowing the interrogation of more diverse chemical space in efforts to identify probes of novel parasite pathways.

Methods: We screened and optimized a probe from a DOS library using whole-cell phenotypic assays.

View Article and Find Full Text PDF
Article Synopsis
  • The study discusses how a diversity-oriented synthesis (DOS) pathway sped up the development of a macrocyclic antimalarial agent, which was previously identified through this synthetic method.
  • Researchers focused on altering both the structural features and appendages of the compound to produce a highly effective inhibitor of the malaria parasite P. falciparum, achieving better solubility and stability.
  • The build/couple/pair (B/C/P) strategy was key in optimizing the medicinal chemistry for this antimalarial lead, enhancing its potential for therapeutic use.
View Article and Find Full Text PDF

The KRAS oncogene is found in up to 30% of all human tumors. In 2009, RNAi experiments revealed that lowering mRNA levels of a transcript encoding the serine/threonine kinase STK33 was selectively toxic to KRAS-dependent cancer cell lines, suggesting that small-molecule inhibitors of STK33 might selectively target KRAS-dependent cancers. To test this hypothesis, we initiated a high-throughput screen using compounds in the Molecular Libraries Small Molecule Repository (MLSMR).

View Article and Find Full Text PDF

Macrocyclic Hedgehog (Hh) pathway inhibitors have been discovered with improved potency and maximal inhibition relative to the previously reported macrocycle robotnikinin. Analogues were prepared using a modular and efficient build-couple-pair (BCP) approach, with a ring-closing metathesis step to form the macrocyclic ring. Varying the position of the macrocycle nitrogen and oxygen atoms provided inhibitors with improved activity in cellular assays; the most potent analogue was 29 (BRD-6851), with an IC(50) of 0.

View Article and Find Full Text PDF

The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy.

View Article and Find Full Text PDF

Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33.

View Article and Find Full Text PDF

The 2'-5' oligoadenylate synthetase (OAS) proteins are traditionally considered intracellular antiviral proteins. However, several studies demonstrate a correlation between the concentration of freely circulating OAS protein in sera from hepatitis C patients and their clinical prognosis. Here we demonstrate that extracellular OAS1 enters into cells and possesses a strong antiviral activity, both in vitro and in vivo, which is independent of RNase L.

View Article and Find Full Text PDF

Variants in the FTO gene have been strongly associated with obesity in a very large sample (38,759) of diabetic and control subjects. To replicate these findings, the previously reported SNP in the FTO gene (rs9939609, T/A) was genotyped in 5,607 subjects from five different Utah studies. The studies included a random sample of the Utah population, families selected for aggregation of extreme thinness, families selected for severe obesity, a series of unrelated severe obesity subjects, and families participating in a 25-year longitudinal study of cardiovascular disease and aging.

View Article and Find Full Text PDF

Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells.

View Article and Find Full Text PDF

We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M.

View Article and Find Full Text PDF