Injuries and subclinical effects from exposure to blasts are of significant concern in military operational settings, including tactical training, and are associated with self-reported concussion-like symptomology and physiological changes such as increased intestinal permeability (IP), which was investigated in this study. Time-series gene expression and IP biomarker data were generated from "breachers" exposed to controlled, low-level explosive blast during training. Samples from 30 male participants at pre-, post-, and follow-up blast exposure the next day were assayed via RNA-seq and ELISA.
View Article and Find Full Text PDFBackground: Tamping explosive charges used by breachers is an increasingly common technique. The ability to increase the directional effectiveness of the charge used, combined with the potential to reduce experienced overpressure on breachers, makes tamping a desirable tool not only from an efficacy standpoint for breachers but also from a safety standpoint for operational personnel. The long-term consequences of blast exposure are an open question and may be associated with temporary performance deficits and negative health symptomatology.
View Article and Find Full Text PDFImportance: There is a scientific and operational need to define objective measures of exposure to low-level overpressure (LLOP) and concussion-like symptoms among persons with specialized occupations.
Objective: To evaluate serum levels of neurotrauma biomarkers and their association with concussion-like symptoms reported by LLOP-exposed military and law enforcement personnel who are outwardly healthy and cleared to perform duties.
Design, Setting, And Participants: This retrospective cohort study, conducted from January 23, 2017, to October 21, 2019, used serum samples and survey data collected from healthy, male, active-duty military and law enforcement personnel assigned to operational training at 4 US Department of Defense and civilian law enforcement training sites.
Overpressure (OP) is an increase in air pressure above normal atmospheric levels. Military personnel are repeatedly exposed to low levels of OP caused by various weapon systems. Repeated OP may increase risk of neurological disease or psychological disorder diagnoses.
View Article and Find Full Text PDFAddressing the concerns surrounding blast injury for the military community is a pressing matter. Specifically, sub-concussive blast effects, or those blast effects which do not yield a medical diagnosis but can result in symptom reporting and negative self-reported outcomes, are becoming increasingly important. This work evaluates explosive blast overpressure and impulse effects at the sub-concussive level on neurocognitive performance assessed with the Defense Automated Neurobehavioral Assessment (DANA) across seven breacher training courses conducted by the US Military.
View Article and Find Full Text PDFWe report a case study on a single military member who received moderate blast overpressure (OP) exposure during routine breacher training. We extend previous research on blast exposure during training, which lacked sufficient data to assess symptom profiles and OP exposure. The present work was conducted because a subjective symptom profile similar to that seen in sports concussion has been reported by military personnel exposed to blast.
View Article and Find Full Text PDFBackground: Increasingly, military and law enforcement are using .50-caliber rifles for conflict resolution involving barricades, armor, vehicles, and situations that require increased kinetic energy. Consequences to the shooter resulting from the blast produced while firing these rifles remain unknown.
View Article and Find Full Text PDF"Breachers" (dynamic entry personnel) are routinely exposed to low-level blast overpressure during training and occupational duties. Data were collected from 22 military breachers (mean 29.7 yr) over a 5-yr period to characterize the longitudinal effects of repeated low-level blast overpressure exposure.
View Article and Find Full Text PDF