The ability to discriminate sensory stimuli with overlapping features is thought to arise in brain structures called expansion layers, where neurons carrying information about sensory features make combinatorial connections onto a much larger set of cells. For 50 years, expansion coding has been a prime topic of theoretical neuroscience, which seeks to explain how quantitative parameters of the expansion circuit influence sensory sensitivity, discrimination, and generalization. Here, we investigate the developmental events that produce the quantitative parameters of the arthropod expansion layer, called the mushroom body.
View Article and Find Full Text PDFAnimals can discriminate myriad sensory stimuli but can also generalize from learned experience. You can probably distinguish the favorite teas of your colleagues while still recognizing that all tea pales in comparison to coffee. Tradeoffs between detection, discrimination, and generalization are inherent at every layer of sensory processing.
View Article and Find Full Text PDFNeuronal differentiation is exquisitely controlled both spatially and temporally during nervous system development. Defects in the spatiotemporal control of neurogenesis cause incorrect formation of neural networks and lead to neurological disorders such as epilepsy and autism. The mTOR kinase integrates signals from mitogens, nutrients and energy levels to regulate growth, autophagy and metabolism.
View Article and Find Full Text PDFDystroglycan localizes to the basal domain of epithelial cells and has been reported to play a role in apical-basal polarity. Here, we show that Dystroglycan null mutant follicle cells have normal apical-basal polarity, but lose the planar polarity of their basal actin stress fibers, a phenotype it shares with Dystrophin mutants. However, unlike Dystrophin mutants, mutants in Dystroglycan or in its extracellular matrix ligand Perlecan lose polarity under energetic stress.
View Article and Find Full Text PDFDystrophin and Dystroglycan are the two central components of the multimeric Dystrophin Associated Protein Complex, or DAPC, that is thought to provide a mechanical link between the extracellular matrix and the actin cytoskeleton, disruption of which leads to muscular dystrophy in humans. We present the characterization of the Drosophila 'crossveinless' mutation detached (det), and show that the gene encodes the fly ortholog of Dystrophin. Our genetic analysis shows that, in flies, Dystrophin is a non-essential gene, and the sole overt morphological defect associated with null mutations in the locus is the variable loss of the posterior crossvein that has been described for alleles of det.
View Article and Find Full Text PDF