Obesity, a state of imbalance between lean mass and fat mass, is important for the etiology of diseases affected by the interplay of multiple genetic and environmental factors. Although genome-wide association studies have repeatedly associated genes with obesity and body weight, the mechanisms underlying the interaction between the muscle and adipose tissues remain unknown. Using 351 mice (at 10 wk of age) of an intercross population between Berlin Fat Mouse Inbred (BFMI) and C57BL/6NCrl (B6N) mice, we examined the causal relationships between genetic variations and multiple traits: body lean mass and fat mass, adipokines, and bone mineral density.
View Article and Find Full Text PDFBackground: Obesity-associated organ-specific pathological states can be ensued from the dysregulation of the functions of the adipose tissues, liver and muscle. However, the influence of genetic differences underlying gross-compositional differences in these tissues is largely unknown. In the present study, the analytical method of ATR-FTIR spectroscopy has been combined with a genetic approach to identify genetic differences responsible for phenotypic alterations in adipose, liver and muscle tissues.
View Article and Find Full Text PDFSeveral mouse strains are diabetic already at the juvenile age or develop diabetes mellitus during their life. Before these strains become diabetic, they often show several or all features of the metabolic syndrome, which is very similar to the etiology of diabetes in humans. Under the assumption that natural mutations are responsible for the development of diabetes in those mouse strains, they are valuable resources for the identification of diabetes genes and modifiers.
View Article and Find Full Text PDFThe African annual fish Nothobranchius furzeri emerged as a new model for age research over recent years. Nothobranchius furzeri show an exceptionally short lifespan, age-dependent cognitive/behavioral decline, expression of age-related biomarkers, and susceptibility to lifespan manipulation. In addition, laboratory strains differ largely in lifespan.
View Article and Find Full Text PDFBackground: The Berlin Fat Mouse BFMI860 is a polygenic obesity mouse model which harbors a natural major gene defect resulting in early onset of obesity. To elucidate adult bodily responses in BFMI860 mice that develop juvenile obesity, we studied features of the metabolic syndrome at 20 weeks.
Methods: We examined fat deposition patterns, adipokines, lipid profiles in serum, glucose homeostasis, and insulin sensitivity in mice that were fed either a standard maintenance (SMD) or a high-fat diet (HFD).
Advanced intercross lines (AIL) have proven to be a powerful tool in genetic research to map complex genetic traits. The advantage of AIL is the high enrichment of visible recombination events to fine map the position of the target gene. Therefore, AIL are generated under the avoidance of inbreeding.
View Article and Find Full Text PDFGenetic loci for body weight and subphenotypes such as fat weight have been mapped repeatedly. However, the distinct effects of different loci and physiological interactions among different traits are often not accounted for in mapping studies. Here we used the method of structural equation modeling to identify the specific relationships between genetic loci and different phenotypes influencing body weight.
View Article and Find Full Text PDFAn F(2) pedigree based on the mouse lines DU6i and DBA/2 with extremely different growth and obesity characteristics was generated to search for QTLs affecting serum concentrations of triglycerides (TG), total cholesterol (CHOL), HDL cholesterol (HDL-C), and LDL cholesterol (LDL-C). Compared with many other studies, we searched for spontaneous genetic variants contributing to high lipid levels under a standard breeding diet. Significant QTLs for CHOL were identified on chromosomes 4 and 6, and a female-specific locus on chromosome 3.
View Article and Find Full Text PDFMultiple-trait analyses have been shown to improve the detection of quantitative trait loci (QTLs) with multiple effects. Here we applied a multiple-trait approach on obesity- and growth-related traits that were surveyed in 275 F2 mice generated from an intercross between the high body weight selected line NMRI8 and DBA/2 as lean control. The parental lines differed 2.
View Article and Find Full Text PDFMouse lines long-term selected for high fatness offer the possibility to identify individual genes involved in the development of obesity. The Berlin Fat Mouse (BFM) line has been selected for low protein content and afterward for high fatness. Three Berlin Fat Mouse Inbred (BFMI) lines, which are derivates of the selection line BFM and an unselected control line (C57BL/6; B6) were systematically phenotyped between 3 and 20 wk.
View Article and Find Full Text PDF