Introduction/purpose: Fat metabolism and muscle adaptation was investigated in six older trained men (age, 61 ± 4 yr; V˙O2max, 48 ± 2 mL·kg·min) after repeated prolonged exercise).
Methods: A distance of 2706 km (1681 miles) cycling was performed over 14 d, and a blood sample and a muscle biopsy were obtained at rest after an overnight fast before and 30 h after the completion of the cycling. V˙O2max and maximal fat oxidation were measured using incremental exercise tests.
Purpose: Aging and inactivity lead to skeletal muscle metabolic inflexibility, but the underlying molecular mechanisms are not entirely elucidated. Therefore, we investigated how muscle lipid and glycogen stores and major regulatory proteins were affected by short-term immobilization followed by aerobic training in young and older men.
Methods: 17 young (23 ± 1 years, 24 ± 1 kg m(-2), and 20 ± 2% body fat) and 15 older men (68 ± 1 years; 27 ± 1 kg m(-2), and 29 ± 2% body fat) underwent 2 weeks' one leg immobilization followed by 6 weeks' cycle training.
The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross-sectional design. Ageing was found to be related to decreased leak regardless of training status.
View Article and Find Full Text PDFReference proteins (RP) or the total protein (TP) loaded is used to correct for uneven loading and/or transfer in Western blotting. However, the signal sensitivity and the influence of physiological conditions may question the normalization methods. Therefore, three widely used reference proteins [β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and α-tubulin], as well as TP loaded measured by Stain-Free technology (SF) as normalization tool were tested.
View Article and Find Full Text PDFPhysical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative capacity in 17 young (23±1years) and 15 elderly (68±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training.
View Article and Find Full Text PDFSkeletal muscle mitochondrial content varies extensively between human subjects. Biochemical measures of mitochondrial proteins, enzyme activities and lipids are often used as markers of mitochondrial content and muscle oxidative capacity (OXPHOS). The purpose of this study was to determine how closely associated these commonly used biochemical measures are to muscle mitochondrial content and OXPHOS.
View Article and Find Full Text PDF5'-adenosine monophosphate-activated protein kinase (AMPK) is considered central in regulation of energy status and substrate utilization within cells. In heart failure the energetic state is compromised and substrate metabolism is altered. We hypothesized that this could be linked to changes in AMPK activity and we therefore investigated mitochondrial oxidative phosphorylation capacity from the oxidation of long- and medium-chain fatty acids (LCFA and MCFA) in cardiomyocytes from young and old mice expressing a dominant negative AMPKα2 (AMPKα2-KD) construct and their wildtype (WT) littermates.
View Article and Find Full Text PDFTwenty one healthy untrained male subjects were randomized to follow a high-fat diet (HFD; 55-60E% fat, 25-30E% carbohydrate, and 15E% protein) or a normal diet (ND; 25-35E% fat, 55-60E% carbohydrate, and 10-15E% protein) for 2(1/2) wk. Diets were isocaloric and tailored individually to match energy expenditure. At 2(1/2) wk of diet, one 60-min bout of bicycle exercise (70% of maximal oxygen uptake) was performed.
View Article and Find Full Text PDFAdipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human abdominal subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery.
View Article and Find Full Text PDFWorldwide, one of the most common cancer forms diagnosed in women is cervical cancer induced by infections with high-risk human papillomaviruses (HPVs) with HPV type 16 (HPV-16) being the most frequently identified. The oncogenicity is caused mainly by expression of the oncogenes E6 and E7 leading to deregulation of the cell cycle control. HPV-16 preferably infects the proliferating cells that will differentiate when they move upwards in the epithelium.
View Article and Find Full Text PDFPersistent infection with high-risk human papillomavirus (HPV) and expression of the proteins E6 and E7 is a prerequisite for development of cervical cancer. The distal non-coding part of E6/E7 messengers from several HPV types is able to downregulate synthesis of a reporter gene through mechanisms with involvement of cytoplasmic polyadenylation elements (CPEs) in the messengers. We here show that the mRNA levels of one of the four known CPE-binding proteins (CPEBs), the CPEB3, were downregulated in HPV-positive cervical cancers, whereas in ovarian cancer the CPEB1 mRNA level was downregulated.
View Article and Find Full Text PDF