Publications by authors named "Christina Nedeva"

Colorectal cancer (CRC) is the second leading cause of cancer deaths. Though chemotherapy is the main treatment option for advanced CRC, patients invariably acquire resistance to chemotherapeutic drugs and fail to respond to the therapy. Although understanding the mechanisms regulating chemoresistance has been a focus of intense research to manage this challenge, the pathways governing resistance to drugs are poorly understood.

View Article and Find Full Text PDF

Vesiclepedia (http://www.microvesicles.org) is a free web-based compendium of DNA, RNA, proteins, lipids and metabolites that are detected or associated with extracellular vesicles (EVs) and extracellular particles (EPs).

View Article and Find Full Text PDF

Metastatic triple-negative breast cancer (TNBC) has a low 5-year survival rate of below 30% with systemic chemotherapy being the most widely used treatment. Bovine milk-derived extracellular vesicles (MEVs) have been previously demonstrated to have anti-cancer attributes. In this study, we isolated bovine MEVs from commercial milk and characterised them according to MISEV guidelines.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are particles that are released from cells into the extracellular space both under pathological and normal conditions. It is now well established that cancer cells secrete more EVs compared to non-cancerous cells and that, captivatingly, several proteins that are involved in EV biogenesis and secretion are upregulated in various tumours. Recent studies have revealed that EVs facilitate the interaction between cancer cells and their microenvironment and play a substantial role in the growth of tumours.

View Article and Find Full Text PDF

Sepsis is a life-threatening medical condition that occurs when the host has an uncontrolled or abnormal immune response to overwhelming infection. It is now widely accepted that sepsis occurs in two concurrent phases, which consist of an initial immune activation phase followed by a chronic immunosuppressive phase, leading to immune cell death. Depending on the severity of the disease and the pathogen involved, the hosts immune system may not fully recover, leading to ongoing complications proceeding the initial infection.

View Article and Find Full Text PDF

Inflammation is a natural defence mechanism of the body to protect against pathogens. It is induced by immune cells, such as macrophages and neutrophils, which are rapidly recruited to the site of infection, mediating host defence. The processes for eliminating inflammatory cells after pathogen clearance are critical in preventing sustained inflammation, which can instigate diverse pathologies.

View Article and Find Full Text PDF

The concept that extracellular vesicles (EVs) from the diet can be absorbed by the intestinal tract of the consuming organism, be bioavailable in various organs, and in-turn exert phenotypic changes is highly debatable. Here, we isolate EVs from both raw and commercial bovine milk and characterize them by electron microscopy, nanoparticle tracking analysis, western blotting, quantitative proteomics and small RNA sequencing analysis. Orally administered bovine milk-derived EVs survive the harsh degrading conditions of the gut, in mice, and is subsequently detected in multiple organs.

View Article and Find Full Text PDF

As living organisms constantly need energy to maintain and perform cellular functions, metabolism plays a vital role in producing the required energy to execute these processes. Hence, various metabolic pathways are highly regulated and disruption in critical pathways can result in the onset of multiple disorders such as hypertension, diabetes, obesity, and dyslipidaemia. Extracellular vesicles (EVs) are membrane-bound nanosized vesicles that are known to be secreted by various cell types into their respective extracellular environment.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are lipid bilayer containing nanovesicles that have a predominant role in intercellular communication and cargo delivery. EVs have recently been used as a means for drug delivery and have been depicted to elicit no or minimal immune response in vivo. The stability, biocompatibility and manipulatable tumour homing capabilities of these biological vessels make them an attractive target for the packaging and delivery of drugs and molecules to treat various diseases including cancer.

View Article and Find Full Text PDF

Emerging evidences have implicated extracellular vesicles (EVs), nanoparticles secreted by cells, in regulating cancer progression. Several seminal studies on EVs have added an additional layer to the previously unanswered questions in understanding the complexity of diseases such as cancer. It has been observed that EV content is highly heterogenous and it likely reflects the dynamic state of the parent cell.

View Article and Find Full Text PDF

Metastatic cancer is a complex disease associated with poor prognosis and accounts for the majority of cancer related deaths. To date, many of the molecular mechanisms driving metastatic disease remain elusive and require further investigation for the development of effective treatment strategies. Recent studies have shown that extracellular vesicles (EVs) can be exploited by tumors to assist in cancer cell growth, proliferation, migration, invasion and metastasis.

View Article and Find Full Text PDF

Sepsis and its impact on human health can be traced back to 1000 BC and continues to be a major health burden today. It causes about 11 million deaths world-wide of which, more than a third are due to neonatal sepsis. There is no effective treatment other than fluid resuscitation therapy and antibiotic treatment that leave patients immunosuppressed and vulnerable to nosocomial infections.

View Article and Find Full Text PDF

Sepsis is a biphasic disease characterized by an acute inflammatory response, followed by a prolonged immunosuppressive phase. Therapies aimed at controlling inflammation help to reduce the time patients with sepsis spend in intensive care units, but they do not lead to a reduction in overall mortality. Recently, the focus has been on addressing the immunosuppressive phase, often caused by apoptosis of immune cells.

View Article and Find Full Text PDF

Sepsis remains to be a major contributor to mortality in ICUs, and immune suppression caused by immune cell apoptosis determines the overall patient survival. However, diagnosis of sepsis-induced lymphopenia remains problematic with no accurate prognostic techniques or biomarkers for cell death available. Developing reliable prognostic tools for sepsis-mediated cell death is not only important for identifying patients at increased risk of immune suppression but also to monitor treatment progress of currently trialed immunotherapy strategies.

View Article and Find Full Text PDF

BCL-2 family proteins regulate the mitochondrial apoptotic pathway. BOK, a multidomain BCL-2 family protein, is generally believed to be an adaptor protein similar to BAK and BAX, regulating the mitochondrial permeability transition during apoptosis. Here we report that BOK is a positive regulator of a key enzyme involved in uridine biosynthesis; namely, uridine monophosphate synthetase (UMPS).

View Article and Find Full Text PDF

Neutrophils are rapidly deployed innate immune cells, and excessive recruitment is causally associated with influenza-induced pathologic conditions. Despite this, the complete set of influenza lethality-associated neutrophil effector proteins is currently unknown. Whether the expression of these proteins is predetermined during bone marrow (BM) neutrophil maturation or further modulated by tissue compartment transitions has also not been comprehensively characterized at a proteome-wide scale.

View Article and Find Full Text PDF

Sepsis is one of the leading causes of deaths world-wide and yet there are no therapies available other than ICU treatment. The patient outcome is determined by a complex interplay between the pro and anti-inflammatory responses of the body i.e.

View Article and Find Full Text PDF

Many cell types are known to undergo a series of morphological changes during the progression of apoptosis, leading to their disassembly into smaller membrane-bound vesicles known as apoptotic bodies (ApoBDs). In particular, the formation of circular bulges called membrane blebs on the surface of apoptotic cells is a key morphological step required for a number of cell types to generate ApoBDs. Although apoptotic membrane blebbing is thought to be regulated by kinases including ROCK1, PAK2 and LIMK1, it is unclear whether these kinases exhibit overlapping roles in the disassembly of apoptotic cells.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) stress response constitutes cellular reactions triggered by a wide variety of stimuli that disturb folding of proteins, often leading to apoptosis. ER stress-induced apoptotic cell death is thought to be an important contributor to many human pathological conditions. The molecular mechanism of this apoptosis process has been highly controversial with both the receptor and the mitochondrial pathways being implicated.

View Article and Find Full Text PDF

Sepsis-induced lymphopenia is a major cause of morbidities in intensive care units and in populations with chronic conditions such as renal failure, diabetes, HIV and alcohol abuse. Currently, other than supportive care and antibiotics, there are no treatments for this condition. We developed an in vitro assay to understand the role of the ER-stress-mediated apoptosis process in lymphocyte death during polymicrobial sepsis, which was reproducible in in vivo mouse models.

View Article and Find Full Text PDF

Heart failure (HF) is a common clinical endpoint to several underlying causes including aging, hypertension, stress, and cardiomyopathy. It is characterized by a significant decline in the cardiac output. Cardiomyocytes are terminally differentiated cells and therefore, apoptotic death due to beta adrenergic (β-AR) signaling contributes to high attrition rate of these cells.

View Article and Find Full Text PDF