Although the silver fox (Vulpes vulpes) has been largely overlooked by neuroscientists, it has the potential to serve as a powerful model for the investigation of brain-behavior relationships. The silver fox is a melanistic variant of the red fox. Within this species, the long-running Russian farm-fox experiment has resulted in different strains bred to show divergent behavior.
View Article and Find Full Text PDFHow does domestication affect the brain? This question has broad relevance. Domesticated animals play important roles in human society, and substantial recent work has addressed the hypotheses that a domestication syndrome links phenotypes across species, including Homo sapiens. Surprisingly, however, neuroscience research on domestication remains largely disconnected from current knowledge about how and why brains change in evolution.
View Article and Find Full Text PDFDespite our close genetic relationship with chimpanzees, there are notable differences between chimpanzee and human social behavior. Oxytocin and vasopressin are neuropeptides involved in regulating social behavior across vertebrate taxa, including pair bonding, social communication, and aggression, yet little is known about the neuroanatomy of these systems in primates, particularly in great apes. Here, we used receptor autoradiography to localize oxytocin and vasopressin V1a receptors, OXTR and AVPR1a respectively, in seven chimpanzee brains.
View Article and Find Full Text PDFThe original version of this article contained a mistake in Figs. 3 and 4.
View Article and Find Full Text PDFThe hippocampal formation is important for higher brain functions such as spatial navigation and the consolidation of memory, and it contributes to abilities thought to be uniquely human, yet little is known about how the human hippocampal formation compares to that of our closest living relatives, the chimpanzees. To gain insight into the comparative organization of the hippocampal formation in catarrhine primates, we quantified neurons stereologically in its major subdivisions-the granular layer of the dentate gyrus, CA4, CA2-3, CA1, and the subiculum-in archival brain tissue from six chimpanzees ranging from 29 to 43 years of age. We also sought evidence of Aβ deposition and hyperphosphorylated tau in the hippocampus and adjacent neocortex.
View Article and Find Full Text PDF