Publications by authors named "Christina N Di Marco"

The c-MYC oncogene transcription factor has been implicated in cell cycle regulation controlling cell growth and proliferation. It is tightly regulated in normal cells, but has been shown to be deregulated in cancer cells, and is thus an attractive target for oncogenic therapies. Building upon previous SAR, a series of analogues containing benzimidazole core replacements were prepared and evaluated, leading to the identification of imidazopyridazine compounds that were shown to possess equivalent or improved c-MYC HTRF pEC values, lipophilicity, solubility, and rat pharmacokinetics.

View Article and Find Full Text PDF

Identification of ligands that selectively activate the M muscarinic signaling pathway has been sought for decades to treat a range of neurological and cognitive disorders. Herein, we describe the optimization efforts focused on addressing key physicochemical and safety properties, ultimately leading to the clinical candidate MK-7622, a highly selective positive allosteric modulator of the M muscarinic receptor that has entered Phase II studies in patients with Alzheimer's disease.

View Article and Find Full Text PDF

In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OXR subtype and culminating in the discovery of 23, a highly potent, OXR-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OXR antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed.

View Article and Find Full Text PDF

Antagonism of orexin receptors has shown clinical efficacy as a novel paradigm for the treatment of insomnia and related disorders. Herein, molecules related to the dual orexin receptor antagonist filorexant were transformed into compounds that were selective for the OX2R subtype. Judicious selection of the substituents on the pyridine ring and benzamide groups led to 6b; which was highly potent, OX2R selective, and exhibited excellent development properties.

View Article and Find Full Text PDF

Developing new antiretroviral therapies for HIV-1 infection with potential for less frequent dosing represents an important goal within drug discovery. Herein, we present the discovery of ethyl (1-((4-((4-fluorobenzyl)carbamoyl)-1-methyl-2-(2-(5-methyl- 1,3,4-oxadiazole-2-carboxamido)propan-2-yl)-6-oxo-1,6-dihydropyrimidin-5-yl)oxy)ethyl) carbonate (MK-8970), a highly optimized prodrug of raltegravir (Isentress). Raltegravir is a small molecule HIV integrase strand-transfer inhibitor approved for the treatment of HIV infection with twice-daily administration.

View Article and Find Full Text PDF

Analogs of the dual orexin receptor antagonist filorexant were prepared. Replacement of the ether linkage proved highly sensitive toward modification with an acetylene linkage providing compounds with the best in vitro and in vivo potency profiles.

View Article and Find Full Text PDF

A series of methoxynaphthalene amides were prepared and evaluated as alternatives to quinolizidinone amide M1 positive allosteric modulators. A methoxy group was optimal for M1 activity and addressed key P-gp issues present in the aforementioned quinolizidinone amide series.

View Article and Find Full Text PDF

One approach to ameliorate the cognitive decline in Alzheimer's disease (AD) has been to restore neuronal signaling from the basal forebrain cholinergic system via the activation of the M(1) muscarinic receptor. A number of nonselective M(1) muscarinic agonists have previously shown positive effects on cognitive behaviors in AD patients, but were limited due to cholinergic adverse events thought to be mediated by the activation of the M(2) to M(5) subtypes. One strategy to confer selectivity for M(1) is the identification of positive allosteric modulators, which would target an allosteric site on the M(1) receptor rather than the highly conserved orthosteric acetylcholine binding site.

View Article and Find Full Text PDF

A series of benzothiophene methyl amines were examined in an effort to identify non-amidine chemotypes with reduced polypharmacology from existing leads with the goal of finding potent ASIC3 channel blockers to advance the therapeutic evaluation of ASIC3 inhibition.

View Article and Find Full Text PDF

SAR study of the piperidine moiety in a series of quinolizidinone carboxylic acid M(1) positive allosteric modulators was examined. While the SAR was generally flat, compounds were identified with high CNS exposure to warrant additional in vivo evaluation.

View Article and Find Full Text PDF

Fused aromatics such as naphthalene were identified as highly potent and CNS penetrant M(1) positive allosteric modulators during an SAR study to replace the phenyl B-ring linkage.

View Article and Find Full Text PDF

Positive allosteric modulation of the M1 muscarinic receptor represents an approach to treat the cognitive decline in patients with Alzheimer's disease. Replacement of a quinolone ring system in a quinolone carboxylic acid series of M1 modulators with a quinolizidinone bearing a basic amine linkage led to a series of compounds with higher free fraction, enhanced CNS exposure, and improved efficacy in rodent in vivo models of cognition.

View Article and Find Full Text PDF

The phenyl ring in a series of quinolone carboxylic acid M(1) positive allosteric modulators was replaced with a variety of heterocycles in order to reduce protein plasma binding and enhance CNS exposure.

View Article and Find Full Text PDF

Replacement of a phenyl ring with N-linked heterocycles in a series of quinolone carboxylic acid M1 positive allosteric modulators was investigated. In particular, a pyrazole derivative exhibited improvements in potency, free fraction, and CNS exposure.

View Article and Find Full Text PDF

The synthesis, structure-activity relationship (SAR), and pharmacological evaluation of analogs of the acid-sensing ion channel (ASIC) inhibitor A-317567 are reported. It was found that the compound with an acetylenic linkage was the most potent ASIC-3 channel blocker. This compound reversed mechanical hypersensitivity in the rat iodoacetate model of osteoarthritis pain, although sedation was noted.

View Article and Find Full Text PDF

Incorporation of pyridines and diazines into the biphenyl region of quinolone carboxylic acid derived M(1) positive allosteric modulators was investigated as a means of lowering plasma protein binding to enhance CNS exposure.

View Article and Find Full Text PDF

A series of indole amidines modified at the 2-position of the indole ring were evaluated as inhibitors of Acid-Sensing Ion Channel-3 (ASIC3), a novel target for the treatment of chronic pain.

View Article and Find Full Text PDF

A series of amiloride derivatives modified at the 5-position of the pyrazine ring were evaluated as inhibitors of acid-sensing ion channel-3 (ASIC3), a novel target for the treatment of chronic pain.

View Article and Find Full Text PDF

A series of carbo- and heterocyclic alpha-hydroxy amide-derived bradykinin B1 antagonists was prepared and evaluated. A 4,4-difluorocyclohexyl alpha-hydroxy amide was incorporated along with a 2-methyl tetrazole in lieu of an oxadiazole to afford a suitable compound with good pharmacokinetic properties, CNS penetration, and clearance by multiple metabolic pathways.

View Article and Find Full Text PDF

After oral treatment (once daily) for 4 weeks with the potent bradykinin B(1) receptor antagonist methyl 3-chloro-3'-fluoro-4'-{(1R)-1-[({1-[(trifluoroacetyl)amino]cyclopropyl}carbonyl)-amino]ethyl}-1,1'-biphenyl-2-carboxylate (MK-0686), rhesus monkeys (Macaca mulatta) exhibited significantly reduced systemic exposure of the compound in a dose-dependent manner, suggesting an occurrence of autoinduction of MK-0686 metabolism. This possibility is supported by two observations. 1) MK-0686 was primarily eliminated via biotransformation in rhesus monkeys, with oxidation on the chlorophenyl ring as one of the major metabolic pathways.

View Article and Find Full Text PDF

The design and synthesis of a novel class of human bradykinin B1 antagonists featuring difluoroethyl ether and isoxazole carboxamide moieties are disclosed. Compound 7g displayed excellent pharmacokinetic properties, efficient ex vivo receptor occupancy, and low potential for P450 induction via PXR activation.

View Article and Find Full Text PDF

Antagonism of the bradykinin B(1) receptor represents a potential treatment for chronic pain and inflammation. Novel antagonists incorporating alpha-hydroxy amides were designed that display low-nanomolar affinity for the human bradykinin B(1) receptor and good bioavailability in the rat and dog. In addition, these functionally active compounds show high passive permeability and low susceptibility to phosphoglycoprotein mediated efflux, predictive of good CNS exposure.

View Article and Find Full Text PDF

SAR study of the biphenyl region of cyclopropanecarboxamide derived bradykinin B(1) antagonists was examined. Incorporation of a pyridine in place of the proximal phenyl ring and chlorination of the distal phenyl ring proved to be well tolerated and provided compounds with improved pharmacokinetic profiles, CNS penetration, and enhanced receptor occupancy.

View Article and Find Full Text PDF

A series of biphenylaminocyclopropane carboxamide based bradykinin B1 receptor antagonists has been developed that possesses good pharmacokinetic properties and is CNS penetrant. Discovery that the replacement of the trifluoropropionamide in the lead structure with polyhaloacetamides, particularly a trifluoroacetamide, significantly reduced P-glycoprotein mediated efflux for the series proved essential. One of these novel bradykinin B1 antagonists (13b) also exhibited suitable pharmacokinetic properties and efficient ex vivo receptor occupancy for further development as a novel approach for the treatment of pain and inflammation.

View Article and Find Full Text PDF

A series of 2,3-diaminopyridine bradykinin B(1) antagonists was modified to mitigate the potential for bioactivation. Removal of the 3-amino group and incorporation of basic 5-piperazinyl carboxamides at the pyridine 5-position provided compounds with high affinity for the human B(1) receptor.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session791g8vltgl6rmvln6b37p31qb702bodd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once