This work provides a method for the development of conductive water-based printing inks for gravure, flexography and screen-printing incorporating commercial resins that are already used in the printing industry. The development of the respective conductive materials/pigments is based on the simultaneous (in one step) reduction of silver salts and graphene oxide in the presence of 2,5-diaminobenzenesulfonic acid that is used for the first time as the common in-situ reducing agent for these two reactions. The presence of aminophenylsulfonic derivatives is essential for the reduction procedure and in parallel leads to the enrichment of the graphene surface with aminophenylsulfonic groups that provide a high hydrophilicity to the final materials/pigments.
View Article and Find Full Text PDFGraphene/metal nanocomposites have shown a strong potential for use in electronic applications. In particular, the combination of silver nanowires (AgNWs) with graphene derivatives leads to the formation of an efficient conductive network, thus improving the electrical properties of a composite. This work focused on developing highly conductive hydrophilic hybrids of simultaneously functionalized and reduced graphene oxide (-rGO) and AgNWs in different weight ratios by following two different synthetic routes: (a) the physical mixture of -rGO and AgNWs, and (b) the in situ reduction of GO in the presence of AgNWs.
View Article and Find Full Text PDF