Publications by authors named "Christina McKee"

Background: Currently, there is no treatment for retinal degenerative diseases (RDD) such as retinitis pigmentosa (RP). Stem cell-based therapies could provide promising opportunities to repair the damaged retina and restore vision. Thus far, primarily adult mesenchymal stem cells (MSCs) have been investigated in preclinical and clinical studies, and the results have not been convincing.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). MS affects millions of people and causes a great economic and societal burden. There is no cure for MS.

View Article and Find Full Text PDF

Naïve human embryonic stem cells (ESCs) are characterized by improved viability, proliferation, and differentiation capacity in comparison to traditionally derived primed human ESCs. However, currently used two-dimensional (2-D) cell culture techniques fail to mimic the three-dimensional (3-D) in vivo microenvironment, altering morphological and molecular characteristics of ESCs. Here, we describe the use of 3-D self-assembling scaffolds that support growth and maintenance of the naïve state characteristics of ESC line, Elf1.

View Article and Find Full Text PDF

The maintenance and expansion of human embryonic stem cells (ESCs) in two-dimensional (2-D) culture is technically challenging, requiring routine manipulation and passaging. We developed three-dimensional (3-D) scaffolds to mimic the in vivo microenvironment for stem cell proliferation. The scaffolds were made of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups, which self-assembled via a Michael addition reaction.

View Article and Find Full Text PDF

Rapid advances in the isolation of multipotent progenitor cells, routinely called mesenchymal stromal/stem cells (MSCs), from various human tissues and organs have provided impetus to the field of cell therapy and regenerative medicine. The most widely studied sources of MSCs include bone marrow, adipose, muscle, peripheral blood, umbilical cord, placenta, fetal tissue, and amniotic fluid. According to the standard definition of MSCs, these clonal cells adhere to plastic, express cluster of differentiation (CD) markers such as CD73, CD90, and CD105 markers, and can differentiate into adipogenic, chondrogenic, and osteogenic lineages in vitro.

View Article and Find Full Text PDF

Bromodomain and extra-terminal domain (BET) proteins regulate the transcription of many genes including , a proto-oncogene, which is upregulated in many types of cancers. The thienodiazepine class of BET inhibitors, such as JQ1, inhibits growth of cancer cells and triggers apoptosis. However, the effects of BET inhibitors on normal cells and mesenchymal stem cells (MSCs), which are important in routine maintenance or regeneration of damaged cells and tissues, are poorly investigated.

View Article and Find Full Text PDF

Radiocontrast dyes are used for a wide range of diagnostic procedures for enhancing the image of anatomical structures, pain targets, and vascular uptake. While some of these dyes show toxicity to primary cells, their effect on stem cells, particularly mesenchymal stem cells (MSCs), is unknown. This study investigates the cytotoxic effects of two clinically used radiocontrast dyes, iohexol and iopamidol, on bone marrow and human umbilical cord MSCs.

View Article and Find Full Text PDF

Background: Degenerative disc disease (DDD) is a common spinal disorder that manifests with neck and lower back pain caused by the degeneration of intervertebral discs (IVDs). Currently, there is no treatment to cure this debilitating ailment.

Objective: To investigate the potential of nucleus pulposus (NP)-like cells (NPCs) derived from human umbilical cord mesenchymal stem cells (MSCs) to restore degenerated IVDs using a rabbit DDD model.

View Article and Find Full Text PDF

The North American plant , also known as black cohosh (BC), is a herb that recently has gained attention for its hormonal effects. As the usage of hormone replacement therapy is declining due to its adverse effects in women with cancer, many are turning to herbal remedies like BC to treat menopausal symptoms. It is crucial to determine whether the effects of BC involve estrogen receptor-alpha (ERα).

View Article and Find Full Text PDF

Positive emotional perceptions and healthy emotional intelligence (EI) are important for social functioning. In this study, we investigated whether loving kindness meditation (LKM) combined with anodal transcranial direct current stimulation (tDCS) would facilitate improvements in EI and changes in affective experience of visual stimuli. LKM has been shown to increase positive emotional experiences and we hypothesized that tDCS could enhance these effects.

View Article and Find Full Text PDF

Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells.

View Article and Find Full Text PDF

The human umbilical cord (UC) and placenta are non-invasive, primitive and abundant sources of mesenchymal stromal cells (MSCs) that have increasingly gained attention because they do not pose any ethical or moral concerns. Current methods to isolate MSCs from UC yield low amounts of cells with variable proliferation potentials. Since UC is an anatomically-complex organ, differences in MSC properties may be due to the differences in the anatomical regions of their isolation.

View Article and Find Full Text PDF

Environmental arsenite exposure has been linked to cancer as well as other diseases, presenting an important and serious public health problem. Toxicity of inorganic arsenite (iAs) has been investigated using animal models and cell culture, yet its developmental effects are poorly understood. This study investigated the molecular mechanism of iAs toxicity to ascertain insight into development and differentiation processes using mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) are an ideal source for chondrogenic progenitors for the repair of damaged cartilage tissue. It is currently difficult to induce uniform and scalable ESC differentiation in vitro, a process required for stem cell therapy. This is partly because stem cell fate is determined by complex interactions with the native microenvironment and mechanical properties of the extracellular matrix.

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration is characterized by the loss of nucleus pulposus (NP), which is a common cause for lower back pain. Although, currently, there is no cure for the degenerative disc disease, stem cell therapy is increasingly being considered for its treatment. In this study, we investigated the feasibility and efficacy of human umbilical cord mesenchymal stem cells (MSCs) and chondroprogenitor cells (CPCs) derived from those cells to regenerate damaged IVD in a rabbit model.

View Article and Find Full Text PDF

Human umbilical cord (hUC) blood and tissue are non-invasive sources of potential stem/progenitor cells with similar cell surface properties as bone marrow stromal cells (BMSCs). While they are limited in cord blood, they may be more abundant in hUC. However, the hUC is an anatomically complex organ and the potential of cells in various sites of the hUC has not been fully explored.

View Article and Find Full Text PDF

Background: Efficacy and safety of anticancer drugs are traditionally studied using cancer cell lines and animal models. The thienodiazepine class of BET inhibitors, such as JQ1, has been extensively studied for the potential treatment of hematological malignancies and several small molecules belonging to this class are currently under clinical investigation. While these compounds are well known to inhibit cancer cell growth and cause apoptosis, their effects on stem cells, particularly mesenchymal stem cells (MSCs), which are important for regeneration of damaged cells and tissues, are unknown.

View Article and Find Full Text PDF

Aim: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging.

Methods: Mouse embryonic stem cells (ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional (3-D) self-assembling scaffolds and compared with traditional two-dimentional (2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate (PEG-4-Acr) and thiol-functionalized dextran (Dex-SH).

View Article and Find Full Text PDF