The vacuolar H-ATPase (V-ATPase) is an ATP-dependent proton pump that governs the pH of various intracellular compartments and also functions at the plasma membrane in certain cell types, including cancer cells. Membrane targeting of the V-ATPase is controlled by isoforms of subunit a, and we have previously shown that isoforms a3 and a4 are important for the migration and invasion of several breast cancer cell lines in vitro. Using CRISPR-mediated genome editing to selectively disrupt each of the four a subunit isoforms, we also recently showed that a4 is critical to plasma membrane V-ATPase localization, as well as in vitro migration and invasion of 4T1-12B murine breast cancer cells.
View Article and Find Full Text PDFThe vacuolar H-ATPase (V-ATPase) is an ATP-driven proton pump present in various intracellular membranes and at the plasma membrane of specialized cell types. Previous work has reported that plasma membrane V-ATPases are key players in breast cancer cell invasiveness. The two subunit a-isoforms known to target the V-ATPase to the plasma membrane are a3 and a4, and expression of a3 has been shown to correlate with plasma membrane localization of the V-ATPase in various invasive human breast cancer cell lines.
View Article and Find Full Text PDFThe vacuolar H-ATPase (V-ATPase) is an ATP-driven proton pump involved in many cellular processes. An important mechanism by which V-ATPase activity is controlled is the reversible assembly of its two domains, namely the peripheral V domain and the integral V domain. Although reversible assembly is conserved across all eukaryotic organisms, the signaling pathways controlling it have not been fully characterized.
View Article and Find Full Text PDFIdentifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.
View Article and Find Full Text PDFV-ATPases are ATP-driven proton pumps present in both intracellular and cell surface membranes of eukaryotes that function in many normal and disease processes. V-ATPases are large, multi-subunit complexes composed of a peripheral domain (V) that hydrolyzes ATP and a membrane integral domain (V) that translocates protons. Because of the diversity of their functions, V-ATPase activity is controlled by a number of mechanisms.
View Article and Find Full Text PDFV-ATPases are ATP-driven proton pumps that function within both intracellular compartments and the plasma membrane in a wide array of normal physiological and pathophysiological processes. V-ATPases are composed of a peripheral V(1) domain that hydrolyzes ATP and an integral V(0) domain that transports protons. Regulated assembly of the V-ATPase represents an important mechanism of regulating V-ATPase activity in response to a number of environmental cues.
View Article and Find Full Text PDFThe Deciphering the Mechanisms of Developmental Disorders (DMDD) consortium is a research programme set up to identify genes in the mouse, which if mutated (or knocked-out) result in embryonic lethality when homozygous, and initiate the study of why disruption of their function has such profound effects on embryo development and survival. The project uses a combination of comprehensive high resolution 3D imaging and tissue histology to identify abnormalities in embryo and placental structures of embryonic lethal lines. The image data we have collected and the phenotypes scored are freely available through the project website (http://dmdd.
View Article and Find Full Text PDFTrends Biochem Sci
October 2015
The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps that acidify intracellular compartments and are also present at the plasma membrane. They function in such processes as membrane traffic, protein degradation, virus and toxin entry, bone resorption, pH homeostasis, and tumor cell invasion. V-ATPases are large multisubunit complexes, composed of an ATP-hydrolytic domain (V1) and a proton translocation domain (V0), and operate by a rotary mechanism.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have received particular attention over the last 20 years as a result of their attractive properties offering potential applications in a number of areas. Typically, these characteristics are tuned by functionalisation of the bulk of the MOF material itself. This Feature Article focuses instead on modification of MOF particles at their surfaces only, which can also offer control over the bulk properties of the material.
View Article and Find Full Text PDF