Publications by authors named "Christina Markunas"

Article Synopsis
  • Exercise influences how our body processes certain fatty acids called acylcarnitines (AC), but the exact details of this influence are still not fully understood.
  • Active individuals have lower levels of medium-chain acylcarnitines in their blood, which is linked to better fitness and lower body fat, compared to sedentary people.
  • In mice, exercise seems to shift acylcarnitines from the blood to the liver, enhancing liver metabolism and overall health, suggesting that this redistribution plays a role in improving liver function through exercise.
View Article and Find Full Text PDF

That maternal and paternal exercise improve the metabolic health of adult offspring is well established. Tissue and serum metabolites play a fundamental role in the health of an organism, but how parental exercise affects offspring tissue and serum metabolites has not yet been investigated. Here, male and female breeders were fed a high-fat diet and housed with or without running wheels before breeding (males) and before and during gestation (females).

View Article and Find Full Text PDF
Article Synopsis
  • Smoking is the main cause of health problems and deaths that can be prevented, and our genes play a role in how we smoke and quit.
  • Scientists studied DNA from 58,000 smokers and found important genetic spots that affect nicotine dependence, including two new ones they hadn’t discovered before.
  • These genetic findings help us understand why some people find it harder to quit smoking and how their bodies react to nicotine.
View Article and Find Full Text PDF

Cannabis use is highly prevalent and is associated with adverse and beneficial effects. To better understand the full spectrum of health consequences, biomarkers that accurately classify cannabis use are needed. DNA methylation (DNAm) is an excellent candidate, yet no blood-based epigenome-wide association studies (EWAS) in humans exist.

View Article and Find Full Text PDF

Numerous DNA methylation (DNAm) biomarkers of cigarette smoking have been identified in peripheral blood studies, but because of tissue specificity, blood-based studies may not detect brain-specific smoking-related DNAm differences that may provide greater insight as neurobiological indicators of smoking and its exposure effects. We report the first epigenome-wide association study (EWAS) of smoking in human postmortem brain, focusing on nucleus accumbens (NAc) as a key brain region in developing and reinforcing addiction. Illumina HumanMethylation EPIC array data from 221 decedents (120 European American [23% current smokers], 101 African American [26% current smokers]) were analyzed.

View Article and Find Full Text PDF

Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for exposure in newborns is unknown. We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers).

View Article and Find Full Text PDF

Rationale: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory properties that could benefit adults with comprised pulmonary health.

Objective: To investigate n-3 PUFA associations with spirometric measures of pulmonary function tests (PFTs) and determine underlying genetic susceptibility.

Methods: Associations of n-3 PUFA biomarkers (α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid [DPA], and docosahexaenoic acid [DHA]) were evaluated with PFTs (FEV, FVC, and FEV/FVC) in meta-analyses across seven cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (N = 16,134 of European or African ancestry).

View Article and Find Full Text PDF

Cigarette smoking during pregnancy is a major public health concern. While there are well-described consequences in early child development, there is very little known about the effects of maternal smoking on human cortical biology during prenatal life. We therefore performed a genome-wide differential gene expression analysis using RNA sequencing (RNA-seq) on prenatal (N = 33; 16 smoking-exposed) as well as adult (N = 207; 57 active smokers) human postmortem prefrontal cortices.

View Article and Find Full Text PDF

Purpose Of Review: With the advent of the genome-wide association study (GWAS), our understanding of the genetics of addiction has made significant strides forward. Here, we summarize genetic loci containing variants identified at genome-wide statistical significance (P < 5 × 10) and independently replicated, review evidence of functional or regulatory effects for GWAS-identified variants, and outline multi-omics approaches to enhance discovery and characterize addiction loci.

Recent Findings: Replicable GWAS findings span 11 genetic loci for smoking, eight loci for alcohol, and two loci for illicit drugs combined and include missense functional variants and noncoding variants with regulatory effects in human brain tissues traditionally viewed as addiction-relevant (e.

View Article and Find Full Text PDF

Genome-wide association study (GWAS)-identified variants are enriched for functional elements. However, we have limited knowledge of how functional enrichment may differ by disease/trait and tissue type. We tested a broad set of eight functional elements for enrichment among GWAS-identified SNPs (p < 5×10) from the NHGRI-EBI Catalog across seven disease/trait categories: cancer, cardiovascular disease, diabetes, autoimmune disease, psychiatric disease, neurological disease, and anthropometric traits.

View Article and Find Full Text PDF

Offspring of older mothers are at increased risk of adverse birth outcomes, childhood cancers, type 1 diabetes, and neurodevelopmental disorders. The underlying biologic mechanisms for most of these associations remain obscure. One possibility is that maternal aging may produce lasting changes in the epigenetic features of a child's DNA.

View Article and Find Full Text PDF

Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role.

View Article and Find Full Text PDF

The rapidly increasing prevalence of type 2 diabetes (T2D) is motivating an intensive search for biomarkers to identify individuals at risk for developing the disease. It has been established that both genetic and environmental factors are influential in the progression to T2D. Currently, the number of genetic loci implicated in T2D susceptibility is more than 65 and together, these factors explain only about 10% of the risk.

View Article and Find Full Text PDF

Background: Expression quantitative trait loci (eQTL) play an important role in the regulation of gene expression. Gene expression levels and eQTLs are expected to vary from tissue to tissue, and therefore multi-tissue analyses are necessary to fully understand complex genetic conditions in humans. Dura mater tissue likely interacts with cranial bone growth and thus may play a role in the etiology of Chiari Type I Malformation (CMI) and related conditions, but it is often inaccessible and its gene expression has not been well studied.

View Article and Find Full Text PDF

Background: Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the foramen magnum at the base of the skull, resulting in significant neurologic morbidity. As CMI patients display a high degree of clinical variability and multiple mechanisms have been proposed for tonsillar herniation, it is hypothesized that this heterogeneous disorder is due to multiple genetic and environmental factors. The purpose of the present study was to gain a better understanding of what factors contribute to this heterogeneity by using an unsupervised statistical approach to define disease subtypes within a case-only pediatric population.

View Article and Find Full Text PDF

Background: Maternal smoking during pregnancy is associated with significant infant morbidity and mortality, and may influence later disease risk. One mechanism by which smoking (and other environmental factors) might have long-lasting effects is through epigenetic modifications such as DNA methylation.

Objectives: We conducted an epigenome-wide association study (EWAS) investigating alterations in DNA methylation in infants exposed in utero to maternal tobacco smoke, using the Norway Facial Clefts Study.

View Article and Find Full Text PDF

Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the base of the skull. Although cerebellar tonsillar herniation (CTH) is hypothesized to result from an underdeveloped posterior cranial fossa (PF), patients are frequently diagnosed by the extent of CTH without cranial morphometric assessment. We recently completed the largest CMI whole genome qualitative linkage screen to date.

View Article and Find Full Text PDF

Smooth muscle cell (SMC) proliferation is a hallmark of vascular injury and disease. Global hypomethylation occurs during SMC proliferation in culture and in vivo during neointimal formation. Regardless of the programmed or stochastic nature of hypomethylation, identifying these changes is important in understanding vascular disease, as maintenance of a cells' epigenetic profile is essential for maintaining cellular phenotype.

View Article and Find Full Text PDF

Chiari Type I Malformation (CMI) is characterized by displacement of the cerebellar tonsils below the base of the skull, resulting in significant neurologic morbidity. Although multiple lines of evidence support a genetic contribution to disease, no genes have been identified. We therefore conducted the largest whole genome linkage screen to date using 367 individuals from 66 families with at least two individuals presenting with nonsyndromic CMI with or without syringomyelia.

View Article and Find Full Text PDF

Object: Although Chiari Type I (CM-I) and Type 0 (CM-0) malformations have been previously characterized clinically and radiologically, there have been no studies focusing on the possible genetic link between these disorders. The goal of this study was to identify families in whom CM-0 and CM-I co-occurred and to further assess the similarities between these disorders.

Methods: Families were ascertained through a proband with CM-I.

View Article and Find Full Text PDF

Intelligence is a highly heritable trait for which it has proven difficult to identify the actual genes. In the past decade, five whole-genome linkage scans have suggested genomic regions important to human intelligence; however, so far none of the responsible genes or variants in those regions have been identified. Apart from these regions, a handful of candidate genes have been identified, although most of these are in need of replication.

View Article and Find Full Text PDF

Objective: A family was previously identified that cosegregates a pericentric inversion, inv(3)(p14 : q21), with an early-onset developmental condition, characterized by impulsive behavior and intellectual deficit. The inversion breakpoints lie within DOCK3 and SLC9A9 at the p-arm and q-arm, respectively. Based on this report, these genes were selected to be evaluated in a family-based attention-deficit/hyperactivity disorder (AD/HD) association study.

View Article and Find Full Text PDF

Background: Autism comprises a spectrum of behavioral and cognitive disturbances of childhood development and is known to be highly heritable. Although numerous approaches have been used to identify genes implicated in the development of autism, less than 10% of autism cases have been attributed to single gene disorders.

Methods: We describe the use of high-resolution genome-wide tilepath microarrays and comparative genomic hybridization to identify copy number variants within 119 probands from multiplex autism families.

View Article and Find Full Text PDF

Nonsynonymous SNPs (nsSNPs) in DNA repair genes may be important determinants of DNA damage and cancer risk. We applied a set of screening criteria to a large number of nsSNPs and selected a subset of SNPs that were likely candidates for phenotypic effects on DNA double-strand break repair (DSBR). In order to induce and follow DSBR, we exposed panels of cell lines to gamma irradiation and followed the formation and disappearance of gammaH2A.

View Article and Find Full Text PDF