Publications by authors named "Christina Maria Hecker"

TANK-binding kinase 1 (TBK1/NAK/T2K) and I-kappaB Kinase (IKK-i/IKK-epsilon) play important roles in the regulation of interferon (IFN)-inducible genes during the immune response to bacterial and viral infections. Cell stimulation with ssRNA virus, dsDNA virus or gram-negative bacteria leads to activation of TBK1 or IKK-i, which in turn phosphorylates the transcription factors, IFN-regulatory factor (IRF) 3 and IRF7, promoting their translocation in the nucleus. To understand the molecular basis of activation of TBK1, we analyzed the sequence of TBK1 and IKK-i and identified a ubiquitin-like domain (ULD) adjacent to their kinase domains.

View Article and Find Full Text PDF

Ubiquitin (Ub)-binding domains (UBDs) are key elements in conveying Ub-based cellular signals. UBD-containing proteins interact with ubiquitinated targets and control numerous biological processes. They themselves undergo UBD-dependent monoubiquitination, which promotes intramolecular binding of the UBD to the attached Ub and leads to their inactivation.

View Article and Find Full Text PDF

Ubiquitin and ubiquitin-like proteins (Ubls) are signalling messengers that control many cellular functions, such as cell proliferation, apoptosis, the cell cycle and DNA repair. It is becoming apparent that the deregulation of ubiquitin pathways results in the development of human diseases, including many types of tumours. Here we summarize the common principles and specific features of ubiquitin and Ubls in the regulation of cancer-relevant pathways, and discuss new strategies to target ubiquitin signalling in drug discovery.

View Article and Find Full Text PDF

SUMO proteins are ubiquitin-related modifiers implicated in the regulation of gene transcription, cell cycle, DNA repair, and protein localization. The molecular mechanisms by which the sumoylation of target proteins regulates diverse cellular functions remain poorly understood. Here we report isolation and characterization of SUMO1- and SUMO2-binding motifs.

View Article and Find Full Text PDF