In chronic wound treatment, the debridement of devitalized tissue and the eradication of the biofilm must balance aggressiveness with care to protect regenerating tissues. In this study, urea, a potent chaotropic molecule, was modulated through the formation of a Natural Deep Eutectic Solvent (NADES) with betaine to develop a new debriding material (BU) suitable for application into injured dermal tissues. To evaluate BU's debriding capacity, along with its antibiofilm effect and biocompatibility, pre-clinical to clinical methods were employed.
View Article and Find Full Text PDFRecent advances in atomic force microscopy (AFM) have allowed the characterisation of dental-associated biomaterials and biological surfaces with high resolution. In this context, the topography of dental enamel - the hardest mineralised tissue in the body - has been explored with AFM-based approaches at the microscale. With age, teeth are known to suffer changes that can impact their structural stability and function; however, changes in enamel structure because of ageing have not yet been explored with nanoscale resolution.
View Article and Find Full Text PDFDamage to the peripheral nervous system (PNS) is a prevalent issue and represents a great burden to patients. Although the PNS has a good capacity for regeneration, regeneration over long distances poses several difficulties. Several recent studies have addressed Schwann cells' limited proliferative capacity; however, a solution has yet to be found.
View Article and Find Full Text PDF