Publications by authors named "Christina M van der Beek"

Background And Aims: Gut-derived short-chain fatty acids (SCFA), formed by microbial fermentation of dietary fibers, are believed to be involved in the etiology of obesity and diabetes. Previous data from our group showed that colonic infusions of physiologically relevant SCFA mixtures attenuated whole-body lipolysis in overweight men. To further study potential mechanisms involved in the antilipolytic properties of SCFA, we aimed to investigate the effects of SCFA incubations on intracellular lipolysis and signaling using a human white adipocyte model, the human multipotent adipose tissue-derived stem (hMADS) cells.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFA), formed by microbial fermentation, are believed to be involved in the aetiology of obesity and diabetes. This study investigated the effects of colonic administration of physiologically relevant SCFA mixtures on human substrate and energy metabolism. In this randomized, double-blind, crossover study, twelve normoglycaemic men (BMI 25-35 kg/m) underwent four investigational days, during which SCFA mixtures (200 mmol/L) high in either acetate (HA), propionate (HP), butyrate (HB) or placebo (PLA) were rectally administered during fasting and postprandial conditions (oral glucose load).

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs), mainly acetate, propionate, and butyrate, produced by microbial fermentation of undigested food substances are believed to play a beneficial role in human gut health. Short-chain fatty acids influence colonic health through various mechanisms. In vitro and ex vivo studies show that SCFAs have anti-inflammatory and anticarcinogenic effects, play an important role in maintaining metabolic homeostasis in colonocytes, and protect colonocytes from external harm.

View Article and Find Full Text PDF

Background & Aims: The gut microbiota affects host lipid and glucose metabolism, satiety, and chronic low-grade inflammation to contribute to obesity and type 2 diabetes. Fermentation end products, in particular the short-chain fatty acid (SCFA) acetate, are believed to be involved in these processes. We investigated the long-term effects of supplementation with galacto-oligosaccharides (GOS), an acetogenic fiber, on the composition of the human gut microbiota and human metabolism.

View Article and Find Full Text PDF

Gut microbial-derived short-chain fatty acids (SCFA) are believed to affect host metabolism and cardiometabolic risk factors. The present study aim was to investigate the effects of proximal and distal colonic infusions with the SCFA acetate on fat oxidation and other metabolic parameters in men. In this randomized, double-blind crossover trial, six overweight/obese men [body mass index (BMI) 25-35 kg/m] underwent two experimental periods: one with distal and one with proximal colonic sodium acetate infusions.

View Article and Find Full Text PDF

The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations.

View Article and Find Full Text PDF

Background: Short-chain fatty acids (SCFAs), fermentation products of undigested fibers, are considered beneficial for colonic health. High plasma concentrations are potentially harmful; therefore, information about systemic SCFA clearance is needed before therapeutic use of prebiotics or colonic SCFA administration.

Objective: The aim of this study was to investigate the effect of rectal butyrate administration on SCFA interorgan exchange.

View Article and Find Full Text PDF