Geophysical techniques, such as spectral induced polarization (SIP), offer potentially powerful approaches for in situ monitoring of subsurface biogeochemistry. The successful implementation of these techniques as monitoring tools for reactive transport phenomena, however, requires the deconvolution of multiple contributions to measured signals. Here, we present SIP spectra and complementary biogeochemical data obtained in saturated columns packed with alternating layers of ferrihydrite-coated and pure quartz sand, and inoculated with Shewanella oneidensis supplemented with lactate and nitrate.
View Article and Find Full Text PDFWe report on stable Fe isotope fractionation during microbial and chemical reduction of structural Fe(III) in nontronite NAu-1. (56)Fe/(54)Fe fractionation factors between aqueous Fe(II) and structural Fe(III) ranged from -1.2 to +0.
View Article and Find Full Text PDFJarosites are produced during metallurgical processing, on oxidized sulfide deposits, and in acid mine drainage environments. Despite the environmental relevance of jarosites, few studies have examined their biogeochemical stability. This study demonstrates the simultaneous reduction of structural Fe(III) and aqueous As(V) during the dissolution of synthetic Pb-As jarosite (PbFe(3)(SO(4),AsO(4))(2)(OH)(6)) by Shewanella putrefaciens using batch experiments under anaerobic circumneutral conditions.
View Article and Find Full Text PDFThallium (Tl) is emerging as a metal of concern in countries such as China due to its release during the natural weathering of Tl-bearing ore deposits and mining activities. Despite the high toxicity of Tl, few studies have examined the reductive dissolution of Tl mineral phases by microbial populations. In this study we examined the dissolution of synthetic Tl(I)-jarosite, (H(3)O)(0.
View Article and Find Full Text PDFJarosites (MFe(3)(SO(4))(2)(OH)(6)) are precipitated in the Zn industry to remove impurities during the extraction process and contain metals such as Pb and Ag. Jarosite wastes are often confined to capped tailings ponds, thereby creating potential for anaerobic reductive dissolution by microbial populations. This study demonstrates the reductive dissolution of synthetic Pb-jarosite (PbFe(6)(SO(4))(4)(OH)(12)) by a subsurface dissimilatory Fe reducing bacterium (Shewanella putrefaciens CN32) using batch experiments under anaerobic circumneutral conditions.
View Article and Find Full Text PDF