Publications by authors named "Christina M Shoemaker"

In bilaterian animals, germ cells are specified by the inductive/regulative mode or the predetermined (germ plasm) mode. Among tetrapods, mammals and urodeles use the inductive mode, whereas birds and anurans use the predetermined mode. From histological data it has been predicted that some reptiles including turtles use the inductive mode.

View Article and Find Full Text PDF

Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are relatively new areas of research. Results show that while the key players of the molecular network underlying gonad development appear to be retained, their functions range from conserved to novel roles. In this review, we summarize experiments investigating candidate molecular players underlying temperature-dependent sex determination.

View Article and Find Full Text PDF

Background: R-Spondin1 (Rspo1) is a novel regulator of the Wnt/beta-catenin signalling pathway. Loss-of-function mutations in human RSPO1 cause testicular differentiation in 46, XX females, pointing to a role in ovarian development. Here we report the cloning and comparative expression analysis of R-SPONDIN1 orthologues in the mouse, chicken and red-eared slider turtle, three species with different sex-determining mechanisms.

View Article and Find Full Text PDF

Gonadogenesis, the process of forming an ovary or a testis from a bipotential gonad, is critical to the development of sexually reproducing adults. Although the molecular pathway underlying vertebrate gonadogenesis is well characterized in organisms exhibiting genotypic sex determination, it is less well understood in vertebrates whose sex is determined by environmental factors. We examine the response of six candidate sex-determining genes to sex-reversing temperature shifts in a species with temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

Rationale: Previously reported linkage to FEV(1) (LOD score = 5.0) on 6q27 in the Framingham Heart Study (FHS) led us to explore a candidate gene, SMOC2, at 168.6 Mb.

View Article and Find Full Text PDF

Linkage studies have mapped a susceptibility gene for type 2 diabetes to the long arm of chromosome 10, where we have previously identified a quantitative trait locus that affects fasting blood glucose within the Framingham Heart Study cohort. One candidate gene in this region is the insulin-degrading enzyme (IDE), which, in the GK rat model, has been associated with nonobese type 2 diabetes. Single nucleotide polymorphisms (SNPs) were used to map a haplotype block in the 3' end of IDE, which revealed association with HbA(1c), fasting plasma glucose (FPG), and mean fasting plasma glucose (mFPG) measured over 20 years.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrdmcfir5876uup06n4e2uqnd7rn689na): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once