Timing programs in animal migrants have been selected to synchronize movements that coincide with predictable resources on the breeding and nonbreeding grounds. Migrants face potential temporal conflicts if their migration schedules benefit from synchrony to conflicting rhythms associated with annual biogeographical (circannual) cues, lunar (circalunar) cues, or individually repeatable internal clocks. We repeat-tracked individuals of an avian lunaphilic species, Eastern Whip-poor-will (), for two to three successive autumn migrations to determine the influence of the lunar cycle, breeding location, and individual repeatability on migration timing.
View Article and Find Full Text PDFOphidiomycosis (snake fungal disease) is caused by the fungal pathogen Ophidiomyces ophidiicola, which causes dermal lesions, occasional systemic infections, and in some cases, mortality. To better understand potential conservation implications of ophidiomycosis (i.e.
View Article and Find Full Text PDFBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 pandemic, is capable of infecting a variety of wildlife species. Wildlife living in close contact with humans are at an increased risk of SARS-CoV-2 exposure and, if infected, have the potential to become a reservoir for the pathogen, making control and management more difficult. The objective of this study is to conduct SARS-CoV-2 surveillance in urban wildlife from Ontario and Québec, increasing our knowledge of the epidemiology of the virus and our chances of detecting spillover from humans into wildlife.
View Article and Find Full Text PDFWinter at high latitudes is characterized by low temperatures, dampened light levels and short photoperiods which shape ecological and evolutionary outcomes from cells to populations to ecosystems. Advances in our understanding of winter biological processes (spanning physiology, behaviour and ecology) highlight that biodiversity threats (e.g.
View Article and Find Full Text PDFOphidiomycosis in snakes is caused by the fungus Ophidiomyces ophidiicola. Clinical signs associated with the disease range from minor skin lesions to severe swelling of the face. In some cases, the fungus invades the snake's underlying muscle and bone and internal organs; disease severity appears to peak during brumation.
View Article and Find Full Text PDFChytridiomycosis, caused by the fungi and , is associated with massive amphibian mortality events worldwide and with some species' extinctions. Previous ecological niche models suggest that . is not well-suited to northern, temperate climates, but these predictions have often relied on datasets in which northern latitudes are underrepresented.
View Article and Find Full Text PDFReduced food availability is implicated in declines in avian aerial insectivores, but the effect of nutritional stress on mammalian aerial insectivores is unclear. Unlike birds, insectivorous bats provision their young through lactation, which might protect nursing juveniles when prey availability is low but could increase the energetic burden on lactating females. We analyzed a 15-year capture-mark-recapture data set from 5312 individual little brown myotis (Myotis lucifugus) captured at 11 maternity colonies in northwestern Canada, to test the hypothesis that nutritional stress is impacting these mammalian aerial insectivores.
View Article and Find Full Text PDFSkin is a key aspect of the immune system in the defence against pathogens. Skin pH regulates the activity of enzymes produced both by hosts and by microbes on host skin, thus implicating pH in disease susceptibility. Skin pH varies inter- and intra-specifically and is influenced by a variety of intrinsic and extrinsic variables.
View Article and Find Full Text PDFEmerging infectious diseases (EIDs) are typically characterized by novelty (recent detection) and by increasing incidence, distribution, and/or pathogenicity. Ophidiomycosis, also called snake fungal disease, is caused by the fungus (formerly "). Ophidiomycosis has been characterized as an EID and as a potential threat to populations of Nearctic snakes, sparking over a decade of targeted research.
View Article and Find Full Text PDFMacrophytes play an important role in aquatic ecosystems, and thus are often used in ecological risk assessments of potentially deleterious anthropogenic substances. Risk assessments for macrophyte populations or communities are commonly based on inferences drawn from standardized toxicity tests conducted on floating non-rooted Lemna species, or submerged-rooted Myriophyllum species. These tests follow strict guidelines to produce reliable and robust results with legal credibility for environmental regulations.
View Article and Find Full Text PDFA major goal of invasive plant management is the restoration of native biodiversity, but effective methods for invasive plant control can be harmful to native plants. Informed application of control methods is required to reach restoration goals. The herbicide glyphosate, commonly applied in invasive plant management, can be toxic to native macrophytes.
View Article and Find Full Text PDFOphidiomycosis (snake fungal disease) is the most common cause of skin lesions in free-ranging snakes in North America. Naturally infected snakes with ophidiomycosis (9 carcasses, 12 biopsies) were examined grossly and histologically. These cases comprised 32% of the 66 snake cases submitted to the Canadian Wildlife Health Cooperative-Ontario/Nunavut Node in 2012 through 2018.
View Article and Find Full Text PDFUnderstanding how context (e.g., host species, environmental conditions) drives disease susceptibility is an essential goal of disease ecology.
View Article and Find Full Text PDFRenewable energy sources, such as wind energy, are essential tools for reducing the causes of climate change, but wind turbines can pose a collision risk for bats. To date, the population-level effects of wind-related mortality have been estimated for only 1 bat species. To estimate temporal trends in bat abundance, we considered wind turbines as opportunistic sampling tools for flying bats (analogous to fishing nets), where catch per unit effort (carcass abundance per monitored turbine) is a proxy for aerial abundance of bats, after accounting for seasonal variation in activity.
View Article and Find Full Text PDFRoads are one of the most widespread human-caused habitat modifications that can increase wildlife mortality rates and alter behavior. Roads can act as barriers with variable permeability to movement and can increase distances wildlife travel to access habitats. Movement is energetically costly, and avoidance of roads could therefore impact an animal's energy budget.
View Article and Find Full Text PDFSpillover of viruses from bats to other animals may be associated with increased contact between them, as well as increased shedding of viruses by bats. Here, we tested the prediction that little brown bats (Myotis lucifugus) co-infected with the M. lucifugus coronavirus (Myl-CoV) and with Pseudogymnoascus destructans (Pd), the fungus that causes bat white-nose syndrome (WNS), exhibit different disease severity, viral shedding and molecular responses than bats infected with only Myl-CoV or only P.
View Article and Find Full Text PDFPseudogymnoascus destructans is the causal agent of bat white-nose syndrome (WNS), which is devastating some North American bat populations. Previous transcriptome studies provided insight regarding the molecular mechanisms involved in WNS; however, it is unclear how different environmental parameters could influence pathogenicity. This information could be useful in developing management strategies to mitigate the negative impacts of P.
View Article and Find Full Text PDFWhite-nose syndrome (WNS) has devastated populations of hibernating bats in eastern North America, leading to emergency conservation listings for several species including the previously ubiquitous little brown myotis (). However, some bat populations near the epicenter of the WNS panzootic appear to be stabilizing after initial precipitous declines, which could reflect a selective immunogenetic sweep. To investigate the hypothesis that WNS exerts significant selection on the immunome of affected bat populations, we developed a novel, high-throughput sequence capture assay targeting 138 adaptive, intrinsic, and innate immunity genes of putative adaptive significance, as well as their respective regulatory regions (~370 kbp of genomic sequence/individual).
View Article and Find Full Text PDFMitigation of emerging infectious diseases that threaten global biodiversity requires an understanding of critical host and pathogen responses to infection. For multihost pathogens where pathogen virulence or host susceptibility is variable, host-pathogen interactions in tolerant species may identify potential avenues for adaptive evolution in recently exposed, susceptible hosts. For example, the fungus causes white-nose syndrome (WNS) in hibernating bats and is responsible for catastrophic declines in some species in North America, where it was recently introduced.
View Article and Find Full Text PDFBats are important reservoir hosts for emerging viruses, including coronaviruses that cause diseases in people. Although there have been several studies on the pathogenesis of coronaviruses in humans and surrogate animals, there is little information on the interactions of these viruses with their natural bat hosts. We detected a coronavirus in the intestines of 53/174 hibernating little brown bats (Myotis lucifugus), as well as in the lungs of some of these individuals.
View Article and Find Full Text PDFSmall and isolated populations often exhibit low genetic diversity due to drift and inbreeding, but may simultaneously harbour adaptive variation. We investigate spatial distributions of immunogenetic variation in American badger subspecies (), as a proxy for evaluating their evolutionary potential across the northern extent of the species' range. We compared genetic structure of 20 microsatellites and the major histocompatibility complex (MHC DRB exon 2) to evaluate whether small, isolated populations show low adaptive polymorphism relative to large and well-connected populations.
View Article and Find Full Text PDFAlthough it is well documented that infectious diseases can pose threats to biodiversity, the potential long-term consequences of pathogen exposure on individual fitness and its effects on population viability have rarely been studied. We tested the hypothesis that pathogen exposure causes physiological carry-over effects with a pathogen that is uniquely suited to this question because the infection period is specific and time limited. The fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats, which either die due to the infection while hibernating or recover following emergence from hibernation.
View Article and Find Full Text PDF