Publications by authors named "Christina Lindquist"

Although most DNA crime laboratories may not encounter fecal samples often, they are a familiar sample type in non-human forensic laboratories due to their prevalence in the environment. Fecal matter can be challenging due to low numbers of nucleated cells and the presence of inhibitors that impede amplification success. Sampling location (internal vs.

View Article and Find Full Text PDF

Dogs (Canis lupus familiaris) are kept as pets in 39% of American households and are, therefore, a significant source of potentially probative biological evidence. As with any biological evidence, degradation can occur as a consequence of environmental exposure causing fracturing of the DNA and a resulting loss of intact template. Degraded human DNA analysis has benefited from the application of primer sets that amplify shorter nuclear sequences for core STR loci (miniSTRs), resulting in improved DNA profiles.

View Article and Find Full Text PDF

While the analysis of human DNA has been the focus of large-scale collaborative endeavors, non-human forensic DNA analysis has not benefited from the same funding streams and coordination of effort. Consequently, the development of standard marker panels, allelic ladders and allele-specific sequence data comparable to those established for human forensic genetics has lagged. To meet that need for domestic dogs, we investigated sequence data provided by the published 7.

View Article and Find Full Text PDF

Accurate DNA quantification is essential for optimizing DNA testing and minimizing sample consumption. Real-time quantitative polymerase chain reaction (qPCR) assays have been published for human and canine nuclear DNA, and the need for quantifying other forensically important species was evident. Following the strategy employed for the canine qPCR assay, we developed individual assays to accurately quantify feline, bovine, equine, and cervid nuclear DNA.

View Article and Find Full Text PDF