Members of the family of metabotropic glutamate receptors are involved in the pathomechanism of several disorders of the nervous system. Besides the well-investigated function of dysfunctional glutamate receptor signaling in neurodegenerative diseases, neurodevelopmental disorders (NDD), like autism spectrum disorders (ASD) and attention-deficit and hyperactivity disorder (ADHD) might also be partly caused by disturbed glutamate signaling during development. However, the underlying mechanism of the type III metabotropic glutamate receptor 8 (mGluR8 or GRM8) involvement in neurodevelopment and disease mechanism is largely unknown.
View Article and Find Full Text PDFRecent advances in the genetics of neurodevelopmental disorders (NDDs) have identified the transcription factor FOXP2 as one of numerous risk genes, e.g. in autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD).
View Article and Find Full Text PDFBioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective.
View Article and Find Full Text PDFObjective: Impairment of glycinergic neurotransmission leads to complex movement and behavioral disorders. Patients harboring glycine receptor autoantibodies suffer from stiff-person syndrome or its severe variant progressive encephalomyelitis with rigidity and myoclonus. Enhanced receptor internalization was proposed as the common molecular mechanism upon autoantibody binding.
View Article and Find Full Text PDFThe glucose-fructose oxidoreductase domain containing gene family (GFOD) is small and contains only two members in human (GFOD1 and GFOD2). Information about its function is scarce. As the name implies the proteins contain an enzyme-defining domain, however, if this is functional and has enzymatic activity remains to be shown.
View Article and Find Full Text PDFThe transport of glucose across the cell plasma membrane is vital to most mammalian cells. The glucose transporter (GLUT; also called SLC2A) family of transmembrane solute carriers is responsible for this function . GLUT proteins encompass 14 different isoforms in humans with different cell type-specific expression patterns and activities.
View Article and Find Full Text PDFIn most vertebrates, including zebrafish, the hypothalamic serotonergic cerebrospinal fluid-contacting (CSF-c) cells constitute a prominent population. In contrast to the hindbrain serotonergic neurons, little is known about the development and function of these cells. Here, we identify fibroblast growth factor (Fgf)3 as the main Fgf ligand controlling the ontogeny of serotonergic CSF-c cells.
View Article and Find Full Text PDFDmrt1 is a highly conserved transcription factor, which is critically involved in regulation of gonad development of vertebrates. In medaka, a duplicate of dmrt1-acting as master sex-determining gene-has a tightly timely and spatially controlled gonadal expression pattern. In addition to transcriptional regulation, a sequence motif in the 3' UTR (D3U-box) mediates transcript stability of dmrt1 mRNAs from medaka and other vertebrates.
View Article and Find Full Text PDFSerotonin (5HT) is a modulator of many vital processes in the spinal cord (SC), such as production of locomotion. In the larval zebrafish, intraspinal serotonergic neurons (ISNs) are a source of spinal 5HT that, despite the availability of numerous genetic and optical tools, has not yet been directly shown to affect the spinal locomotor network. In order to better understand the functions of ISNs, we used a combination of strategies to investigate ISN development, morphology, and function.
View Article and Find Full Text PDFA comparative study performed in mice investigating the action of DF302, a novel fluoride-containing gamma-carboline derivative, in comparison to the structurally similar neuroprotective drug dimebon. Drug effects on learning and memory, emotionality, hippocampal neurogenesis and mitochondrial functions, as well as AMPA-mediated currents and the 5-HT6 receptor are reported. In the step-down avoidance and fear-conditioning paradigms, bolus administration of drugs at doses of 10 or 40 mg/kg showed that only the higher dose of DF302 improved long-term memory while dimebon was ineffective at either dosage.
View Article and Find Full Text PDFSeptins are highly conserved GTP-binding proteins involved in numerous cellular processes. Despite a growing awareness of their roles in the cell biology, development and signal transmission in nervous systems, comparably little is known about precise septin expression. Here, we use the well-established model organism zebrafish (Danio rerio) to unravel the expression of sept8a and sept8b, with special focus on the CNS.
View Article and Find Full Text PDFSeptins are a highly conserved family of small GTPases that form cytoskeletal filaments. Their cellular functions, especially in the nervous system, still remain largely enigmatic, but there are accumulating lines of evidence that septins play important roles in neuronal physiology and pathology. In order to further dissect septin function in the nervous system a detailed temporal resolved analysis in the genetically well tractable model vertebrate zebrafish () is crucially necessary.
View Article and Find Full Text PDFFirst line pain relief medication during pregnancy relies nearly entirely on the over-the-counter analgesic acetaminophen, which is generally considered safe to use during gestation. However, recent epidemiological studies suggest a risk of developing attention-deficit/hyperactivity disorder (ADHD)-like symptoms in children if mothers use acetaminophen during pregnancy. Currently, there are no experimental proofs that prenatal acetaminophen exposure causes developmental brain alterations of progeny.
View Article and Find Full Text PDFUnlabelled: Modulation of connectivity formation in the developing brain in response to external stimuli is poorly understood. Here, we show that the raphe nucleus and its serotonergic projections regulate pathfinding of commissural axons in zebrafish. We found that the raphe neurons extend projections toward midline-crossing axons and that when serotonergic signaling is blocked by pharmacological inhibition or by raphe neuron ablation, commissural pathfinding is disrupted.
View Article and Find Full Text PDFZebrafish intraspinal serotonergic neuron (ISN) morphology and distribution have been examined in detail at different ages; however, some aspects of the development of these cells remain unclear. Although antibodies to serotonin (5-HT) have detected ISNs in the ventral spinal cord of embryos, larvae, and adults, the only tryptophan hydroxylase (tph) transcript that has been described in the spinal cord is tph1a. Paradoxically, spinal tph1a is only expressed transiently in embryos, which brings the source of 5-HT in the ISNs of larvae and adults into question.
View Article and Find Full Text PDFSerotonin is a monoamine neurotransmitter that is involved in numerous physiological functions and its dysregulation is implicated in various psychiatric diseases. In all non-placental vertebrates, serotoninergic (5-HT) neurons are present in several regions of the brain, including the hypothalamus. In placental mammals, however, 5-HT neurons are located in the raphe nuclei only.
View Article and Find Full Text PDFThe serotonin (5-HT) system is generally considered as a single modulatory system, with broad and diffuse projections. However, accumulating evidence points to the existence of distinct cell groups in the raphe. Here, we review prior evidence for raphe cell heterogeneity, considering different properties of 5-HT neurons, from metabolism to anatomy, and neurochemistry to physiology.
View Article and Find Full Text PDFNeurons using serotonin (5-HT) as neurotransmitter and/or modulator have been identified in the central nervous system in representatives from all vertebrate clades, including jawless, cartilaginous and ray-finned fishes. The aim of this review is to summarize our current knowledge about the anatomical organization of the central serotonergic system in fishes. Furthermore, selected key functions of 5-HT will be described.
View Article and Find Full Text PDFSerotonin is a major central nervous modulator of physiology and behavior and plays fundamental roles during development and plasticity of the vertebrate central nervous system (CNS). Understanding the developmental control and functions of serotonergic neurons is therefore an important task. In all vertebrates, prominent serotonergic neurons are found in the superior and inferior raphe nuclei in the hindbrain innervating most CNS regions.
View Article and Find Full Text PDFNeuronal production in the midbrain-hindbrain domain (MH) of the vertebrate embryonic neural tube depends on a progenitor pool called the ;intervening zone' (IZ), located at the midbrain-hindbrain boundary. The progressive recruitment of IZ progenitors along the mediolateral (future dorsoventral) axis prefigures the earlier maturation of the MH basal plate. It also correlates with a lower sensitivity of medial versus lateral IZ progenitors to the neurogenesis inhibition process that maintains the IZ pool.
View Article and Find Full Text PDFThe tooth pulp has a dense sensory innervation which, upon stimulation, conveys sensory signals perceived as pain. This innervation, which originates from the trigeminal ganglion, is established through a series of regulated steps during development, and represents an interesting example of tissue targeting by pain-specific nerves. We have investigated various potentially neurotrophic and neurorepulsive influences during this process.
View Article and Find Full Text PDFTo gain knowledge about the developmental origin of serotonergic precursors and the regulatory cascades of serotonergic differentiation in vertebrates, we determined the spatiotemporal expression profile of the Ets-domain transcription factor-encoding gene pet1 in developing and adult zebrafish. We show that it is an early, specific marker of raphe serotonergic neurons, but not of other serotonergic populations. We then use pet1 expression together with tracing techniques to demonstrate that serotonergic neurons of rhombomeres (r) 1-2 largely originate from a progenitor pool at the midbrain-hindbrain boundary.
View Article and Find Full Text PDFThe tooth pulp innervation originates from the trigeminal ganglion (TG) and represents an illustrative example of tissue targeting by sensory nerves. Pulpal fibroblasts strongly promote neurite outgrowth from TG neurons in vitro. In the present study, we have investigated the possible participation of laminins (LNs), potent neuritogenic extracellular matrix components.
View Article and Find Full Text PDF